八年级一次函数的教案

2025-06-19 八年级一次函数的教案

八年级一次函数的教案(必备10篇)。

◆ 八年级一次函数的教案 ◆

【教学目标】

【知识目标】

1、使学生初步理解二元一次方程与一次函数的关系

2、能根据一次函数的图象求二元一次方程组的近似解.

3、能利用二元一次方程组确定一次函数的表达式

【能力目标】

通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.

【情感目标】

通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.

【教学重点】

1、二元一次方程和一次函数的关系

2、能根据一次函数的图象求二元一次方程组的近似解

【教学难点】方程和函数之间的对应关系即数形结合的意识和能力

知识点

一、学生起点分析:

学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

二、学习任务分析:

本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的'教学目标为:

1.初步理解二元一次方程和一次函数的关系;

2.掌握二元一次方程组和对应的两条直线之间的关系;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.

教学重点

二元一次方程和一次函数的关系;

教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.

同步练习

A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?

三典型例题,探究一次函数解析式的确定

内容:例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.

(1)写出y与x之间的函数表达式;

(2)旅客最多可免费携带多少千克的行李?

◆ 八年级一次函数的教案 ◆

一、教学目的

1.使学生进一步理解自变量的取值范围和函数值的意义.

2.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:1.理解与认识函数图象的意义.

2.培养学生的看图、识图能力.

难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

三、教学过程

复习提问

1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

2.结合函数y=x的图象,说明什么是函数的图象?

3.说出下列各点所在象限或坐标轴:

新课

1.画函数图象的方法是描点法.其步骤:

(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

练习

①选用课本练习(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象.

作业

选用课本习题.

四、教学注意问题

1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

2.注意充分调动学生自己动手画图的积极性.

3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

◆ 八年级一次函数的教案 ◆

一、教材分析

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

二、学情分析

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

三、目标分析

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的.意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).

(A)4 (B)5 (C)6 (D)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

六、教学反思

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

◆ 八年级一次函数的教案 ◆

各位老师,下午好!今天听了周老师的《》。他在用好教材,深刻去领会教材的内涵,给我做了很好的榜样,在课堂上上出数学味。我个人认为这节课如何处理例题和通过一次函数图象交点的坐标得到二元一次方程组的解,是教师在挖掘教材时应着重思考的,本节课的本质应该是数学结合思想,也应该在教学过程中应着重体现的。现在我就结合周老师上得这节课谈谈自己的看法。

周老师这节课分为两个环节,第一部分先解决由一次函数图象的交点坐标得到方程组的解,第二部分是例题的教学和对例题做拓展延伸。这样对教材的处理,思路清晰,难易合理,可以很好地落实本节课的教学目标。首先周老师以“y=x+1对于这个等式你有怎样的认识”这样的开放题,让学生各抒己见,其中有学生提到是二元一次方程,

老师再追问方程有多少个解?以这些解作为点的坐标,在直角坐标系中描出这些点,连起来是什么图形?教师再出示y=-2x+4的`图象,这两条直线就会有个交点了,问“你对这个交点有怎样的认识”。这样就水到渠成从图象的交点坐标过渡到方程组的解,很自然,学生也理解的很深刻。为了巩固这个知识点,周老师设计了两个练习,第一个是比较容易看出方程组的解,第二个是近似解。教师的目的是为了让学生体验有时通过看图象得到的解有时是近似的。但是当老师对学生的反馈做评价时,有学生说解是,这个解学生其实并不是通过看图象得到的,而是通过解方程得到的。然后教师的处理方法是用投影出示自己的标准答案,再告诉学生解有时是近似的。我认为这里教师应该追问“你这解是怎么得到的?其他同学还有别的答案吗?为什么会出现这样的情况呢?”我想在老师的追问下,学生会对这为什么会是近似解会有更深刻的了解和体会。

对例题的教学,周老师出示例题之后,并没有急于去分析,启发,引导学生用函数的方法去解决,而是放手让学生自己凭自己的理解去解决。这样处理问题,充分体现了“教师是学生学习的组织者,合作者,引导者。”“让不同的学生在数学上得到不同的发展。”之后老师再引导到用函数的图象去解决,但在让学生求函数解析式之前,我认为最好问一下学生问题中有哪些常量,哪些变量,你如何设这些变量,它们之间有怎样的等量关系吗。这样学生能比较清晰地理解题意,列出解析式。周老师为了让学生学生对s=26t+10这个函数解析式有更深刻的认识,周老师追问了“为什么小慧要的路程要加上10”结果在这问题上纠缠过久,让学生越问越糊涂,导致了后来的时间比较仓促。老师还对这例题做了适当的延伸,问“你还能从图象上得到哪些信息?”“你对图象还有什么疑惑。”这些问题的设置充分体现了教师以人为本的教学思想。最后的问题“你能根据图象编写问题的情境吗?”这个问题比较有难度,应该用“合作学习”的方式让学生相互讨论去解决问题。

总之,周老师能较好的结合本次活动的主题,体现出教材特点,符合学生年龄实际和认识规律,难易适度。教学思路清晰,课堂结构严谨,教学密度合理。面向全体,体现差异,因材施教,全面提高学生素质。传授知识的量和训练能力的度适中,给学生创造机会,让他们主动参与,主动发展。但是老师上课的语调比较平缓,课堂的气氛不是很活跃,问题的设置虽比较开放,但是课堂上生成的不多。这是我本人对这节课的一点看法!

◆ 八年级一次函数的教案 ◆

【学习目标】

1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;

2、学会用含一个变量的代数式表示另一个变量;

3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;

4、会根据函数解析式和实际意义确定自变量的取值范围。

【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

【学习难点】函数概念的理解;函数关系式的确定

学习过程:

【前置自学】

问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.

1.请同学们根据题意填写下表:

t/时12345t

s/千米

2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

3.试用含t的式子表示s.__s=_________________t的取值范围是

这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.

问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?

1.请同学们根据题意填写下表:

售出票数(张)早场150午场206晚场310x

收入y (元)

2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

3.试用含x的式子表示y.__y=_________________x的取值范围是

这个问题反映了票房收入_________随售票张数_________的变化过程.

问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?

1.请同学们根据题意填写下表:

所挂重物(kg)12345m

受力后的弹簧长度L(cm)

2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

3.试用含m的式子表示L.__L=_________________m的取值范围是

这个问题反映了_________随_________的变化过程.

问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r? 关系式:________

1.请同学们根据题意填写下表:

面积s(cm2)102030s

半径r(cm)

2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

3.试用含s的式子表示r.__r=_________________s的取值范围是

这个问题反映了___ _ 随_ __的变化过程.

问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2,怎样用含有x的式子表示S呢?

1.请同学们根据题意填写下表:

长x(m)1234x

面积s(m2)

2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

3.试用含x的式子表示s. _______________x的取值范围是

这个问题反映了矩形的___ _ 随_ __的变化过程.

【展示交流】

小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。

得出结论: 在一个变化过程中,我们称数值发生变化的量为________;

在一个变化过程中,我们称数值始终不变的量为________;

(一)观察探究:

1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.

2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)

归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。

3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们看下面两个问题,通过观察、思考、讨论后回答:

(1)下图是体检时的心电图.其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?

(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表

(二)归纳概念:

一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_________,y是x的________.如果当x=a时y=b,那么b叫做当自变量的值为a时的_________.

举例说明:

问题一问题二问题三问题四问题五

自变量

自变量的函数

函数解析式

【达标拓展】

1、若球体体积为V,半径为R,则V= R3.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,R的取值范围是

2、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高L与年数n之间的函数关系式__________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,n的取值范围是

3、在男子1500米赛跑中,运动员的平均速度v= ,则这个关系式中变量是_______、_______,常量是________.自变量是 , 是 的函数,自变量的取值范围是

4、已知2x-3y=1,若把y看成x的函数,则可以表示为___________.其中变量是_____、_____,常量是________.自变量是 , 是 的函数,x的取值范围是

5、等腰△ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,x的取值范围是

6、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,t的取值范围是

【评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

14.1.3函数的图象(一)

【学习目标】

会观察函数图象,从函数图像中获取信息,解决问题。

【学习重难点】

初步掌握画函数图象的方法;通过观察、分析函数图象获取信息.

【前置自学】

1、如图一,是北京春季某一天的气温T随时间t变化的图象,看图回答:

(1)气温最高是_______℃,在_______时,气温最低是_______℃,在______时;

(2)12时的气温是_______℃,20时的气温是_______℃;

(3)气温为-2℃的是在_______时;

(4)气温不断下降的时间是在______________;

(5)气温持续不变的时间是在______________。

2、小明的 爷爷吃过晚饭后,出门散步,再报亭看了一会儿报纸

才回家,小明绘制了爷爷离家的路程s(米)与外出的时间t(分)之间的关系图

(图二)

(1)报亭离爷爷家________米;

(2)爷爷在报亭看了________分钟报纸;

【合作探究】

图三反映的过程是:小明从家去菜地浇水,又去玉米地锄地,然后回家,。其中x表

示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。

根据图像回答下列问题:

(1)菜地离小明家多远?小明家到菜地用了多少时间?

(2)小明给菜地浇水用了多少时间?

(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?

(4)小明给玉米地除草用了多少时间?

(5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?

【达标拓展】

1、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).

2、小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.下面图形中表示小红爷爷离家的时间与外出距离之间的关系是( )

3、有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按先共同的速度将水排尽,则游泳池的存水量为V(立方米)随时间t(小时)变化的大致图像是( )

4、图中的折线表示一骑车人离家的距离y与时间x的关系。骑车人9:00离家,15:00回家,请你根据这个折线图回答下列问题:

(1)这个人什么时间离家最远?这时他离家多远?

(2)何时他开始第一次休息?休息多长时间?这时

他离家多远?

(3)11:00~12:30他骑了多少千米?

(4)他再9:00~10:30和10:30~12~30的平均

速度各是多少?

(5)他返家时的平均速度是多少?

(6)14:00时他离家多远?何时他距家10千米?

5、王教授和孙子小强经常一起进行早锻炼,主要活动是爬.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开脚的距离(米)与爬所用时间(分)的关系(从小强开始爬时计时),看图回答下列问题:

(1)小强让爷爷先上多少米?

(2)顶高多少米?谁先爬上顶?

(3)小强用多少时间追上爷爷?

(4)谁的速度大,大多少?

【评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.1.3 函数图像(二)

【学习目标】

1、会用描点法画出函数的图像。

2、画函数图像的步骤:(1)列表;(2)描点;(3)连线。

【学习重难点】

会用描点法画函数的图象

【前置自学】

例1 画出函数y= x2的图象. 分析:要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些 自变量的值,并求出对应的函数值.(x的取值一定要在它的取值范围内)

解:(1)取x的自变量一些值,例如x=-3,-2,-1,0,1,2,3,。。。。,并且计算出对应的函数值,为方便表达,我们列表如下:

x。。。-3-2-1 0 123。。。

y。。。 。。。

由此,我们得到一系列的有序实数对:。。。,( ),( ),( ),

(2)在直角坐标系中描出这些有序实数对的对应点

(3)描完点之后,用光滑的曲线依次把这些点连起,便可得到这个函数的图象。

这里画函数图象的方法我们称为__________,步骤为:__________________。

【展示交流】

1、在所给的直角坐标系中画出函数y= x的图象(先填写下表,再描点、连线).

x-3-2-10123

2、画出下列函数的图像

【达标拓展】

1、矩形的周长是8cm,设一边长为x cm,另一边长为y cm.

(1)求y关于x的函数关系式,并写出自变量x的取值范围;

(2)在给出的坐标系中,作出函数图像。

2、王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式y= 击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.

(1)试画出高尔夫球飞行的路线;

(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?

解:(1) 列表如下:

从图象上看,高尔夫球的最大飞行高度是______m,球的起点与洞之间的距离是_____m。

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.1.3 函数图像(三)

【学习目标】

1、会根据题目中题意或图表写出函数解析式;

2、根据函数解析式解决问题。

【学习重难点】

根据函数解析式解决问题,学会确定自变量的取值范围

【前置自学】

例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减小,平均耗油量为0.1 L / km。

(1)写出表示y与x的函数关系式,这样的式子叫做函数解析式。

(2)指出自变量x的取值范围;

(3)汽车行驶200km时,邮箱中还有多少汽油?

练习:拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。

(1)写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;

(2)求出自变量t的取值范围;

(3)画出函数图象;

(4)根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?

【展示交流】

例2:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。

t / 时012345

y / 米1010.510.1010.1510.20xx.25

(1)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;

(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?

练习:有一根弹簧最多可挂10kg重的物体,测得该弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系:

x(kg)012345

y(cm)1212.51313.51414.5

(1)写出y与x的函数关系式,并求出自变量的取值范围;

(2)画出函数图像;

(3)根据函数图像回答,当弹簧长为16.5cm时,所挂的物体质量是多少kg?当所挂物体质量为8kg的时候,弹簧的长为多少cm?

【达标拓展】

1、某种活期储蓄的月利率是0.06%,存入100元本金,则本息和y(元)随所存月数x变化的函数解析式为______________,当存期为4个月的时候,本息和为________元;

2、正方向边长为3,若边长增加x则面积增加y,则y随x变化的函数解析式为____________,若面积增加了16 ,则变成增加了___________;

3、甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为________________,自变量x的取值范围是______________;

4、某学校组织学生到炬力千米的博物馆无参观,小红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去博物馆,车租车的收费标准如下:

里程收费

3千米及3千米以下7.00

3千米以上,每增加1千米2.00

(1)请写出出租车行驶的里程数x(千米)与费用y(元)之间的函数关系式;

(2)小红同学身上仅有14元钱,乘出租车到博物馆的车费够不够,请说明理由。

5、声音在空气中传播速度和气温间有如下关系:

气温(℃)05101520

声速(m/s)331334337340343

(1)若用t表示气温,V表示声速,请写出V随t变化的函数解析式;

(2)当声速为361m/s的时候,气温是多少?

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.2.1 正比例函数

【学习目标】

1、理解正比例函数的概念

2、会画正比例函数的图像,理解正比例函数的性质。

【学习重难点】

1、理解正比例函数意义及解析式的特点

2、掌握正比例函数图象的性质特点。

【前置自学】

按下列要求写出解析式

(1)一本笔记本的单价为2元,现购买x本与付费y元的关系式为_________________;

(2)若正方形的周长为P,边长为a,那么边长a与周长p之间的关系式为______________;

(3)一辆汽车的速度为60 km / h ,则行使路程s与行使时间t之间的关系式为_________;

(4)圆的半径为r,则圆的周长c与半径r之间的关系式为______________。

一般地,形如 (k是常数,k≠0)的函数,叫做 ,其中k叫做比例系数。

※练习:1、下列函数钟,那些是正比例函数?______________

(1) (2) (3) (4) (5)

(6) (7) (8)

2、关于x的函数 是正比例函数,则m__________

【展示交流】

画出下列正比例函数

比较上面两个图像,填写你发现的规律:

(1)两个图像都是经过原点的 __________,

(2)函数 的图像经过第_____象限,从左到右_______,即y随x的增大而_______;

(3)函数 的图像经过第_____象限,从左到右______,即y随x的增大而_______;

【合作探究】

总结:正比例函数的解析式为__________________

相同点

图像所在象限

图像大致形状

增减性

【达标拓展】

1、关于函数 ,下列结论中,正确的是( )

A、函数图像经过点(1,3) B、函数图像经过二、四象限

C、y随x的增大而增大 D、不论x为何值,总有y>0

2、已知正比例函数 的图像过第二、四象限,则( )

A、y随x的增大而增大 B、y随x的增大而减小

C、当 时,y随x的增大而增大;当 时,y随x的增大而减少;

D、不论x如何变化,y不变。

3、当 时,函数 的图像在第( )象限。

A、一、三 B、二、四 C、二 D、三

4、函数 的图像经过点P(-1,3)则k的值为( )

A、3 B、—3 C、 D、

5、若A(1,m)在函数 的图像上,则m=________,则点A关于y轴对称点坐标是___________;

6、若B(m,6)在函数 的图像上,则m=________,则点A关于x轴对称点坐标是___________;

7、y与x成正比例,当x=3时, ,则y关于x的函数关系式是____________

8、函数 的图像在第_______象限,经过点(0,____)与点(1,____),y随x的增大而_________

9、一个函数的图像是经过原点的直线,并且这条直线经过点(1,-3),求这个函数解析式。

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.2.2 一次函数(一)

【学习目标】

1.理解一次函数的特点及意义

2.知道一次函数与正比例的函数关系

【学习重难点】

1.一次函数与正比例函数的关系

2.一次函数的结构特点。

【前置自学】

根据题意写出下列函数的解析式

(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;_______________

(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得的差是G的值;_______________

(3)某城市的市内电话的月收费为y(单位:元)包括:月租22元,拨打电话x分的计时费(按0.1元/分收取);_______________

(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。_______________

一般地,形如 (k,b是常数, )的函数,叫做一次函数,特别地,当 时, 即 ,即正比例函数是一种特殊的一次函数。

【展示交流】

1、下列函数中,是一次函数的有_____________,是正比例函数的有______________

(1) (2) (3) (4)

(5) (6) (7)

2、若函数 是正比例函数,则b = _________

3、在一次函数 中,k =_______,b =________

4、若函数 是一次函数,则m__________

5、在一次函数 中,当 时, ______;当 _____时, 。

6、下列说法正确的是( )

A、 是一次函数 B、一次函数是正比例函数

C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数

7、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是________________,它是__________函数。

8、今年植树节,同学们中的树苗高约1.80米。据介绍,这种树苗在10年内平均每年长高0.35米,则树高y与年数x之间的函数关系式是_____________,它是_______函数,同学们在3年之后毕业,则这些树高________米。

9、随着海拔高度的升高,大气压下降,空气的含氧量也随之下降,已知含氧量y与大气压强x成正比例,当x=36时,y=108,请写出y与x的函数解析式___________,这个函数图像在第________象限,同时经过点(0,_____)与点(1,_____)

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.2.2 一次函数(二)

【学习目标】

1、懂得画一次函数的图像,清楚知道一次函数之间的关系

2、理解一次函数图像的性质,了解 中的k,b对函数图像的影响

【学习重难点】

1.一次函数的图象的画法。

2.一次函数的图象特征与解析式联系。

【前置自学】

例1:在同一个直角坐标系中画出函数 , , 的图像

-2-1012

y=2x

y=2x+3

y=2x-3

【展示交流】

※ 观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。

※ 猜想:一次函数 的图像是一条________,当 时,它是由 向_____平移_____个单位长度得到;当 时,它是由 向_____平移_____个单位长度得到。

※ 练习:

1、在同一个直角坐标系中,把直线 向_______平移_____个单位就得到 的图像;若向_______平移_____个单位就得到 的图像。

2、(1)将直线 向下平移2个单位,可得直线________;

(2)将直线 向_____平移______个单位可得直线 。

例2 :分别画出下列函数的图像

(1) (2) (3) (4)

分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。

(1) (2) (3) (4)

x0

y0

※ 观察上面四个图像,(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(4) 经过_________象限;y随x的增大而_______,函数的图像从左到右________。

【合作探究】

1、由此可以得到直线 中,k ,b的取值决定直线的位置:

(1) 直线经过___________象限;

(2) 直线经过___________象限;

(3) 直线经过___________象限;

(4) 直线经过___________象限;

2、一次函数的性质:

(1)当 时,y随x的增大而_______,这时函数的图像从左到右_______;

(2)当 时,y随x的增大而_______,这时函数的图像从左到右_______;

【达标拓展】

1、一次函数 的图像不经过( )

A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限

2、已知直线 不经过第三象限,也不经过原点,则下列结论正确的是( )

A、 B、 C、 D、

3、下列函数中,y随x的增大而增大的是( )

A、 B、 C、 D、

4、对于一次函数 ,函数值y随x的增大而减小,则k的取值范围是( )

A、 B、 C、 D、

5、一次函数 的图像一定经过( )

A、(3,5) B、(-2,3) C、(2,7) D、(4、10)

6、已知正比例函数 的函数值y随x的增大而增大,则一次函数 的图像大致是( )

7、一次函数 的图像如图所示,则k_______,

b_______,y随x的增大而_________

8、一次函数 的图像经过___________象限,

y随x的增大而_________ (第6题)

9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________

10、直线 与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________

11、已知一次函数 的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条的函数关系式_____________

12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条的函数关系式:_______________

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.2.2 一次函数(三)

【学习目标】

学会运用待定系数法和数形结合思想求一次函数解析式

【前置自学】

例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。

分析:求一次函数 的解析式,关键是求出k,b的值,从已知条可以列出关于k,b的二元一次方程组,并求出k,b。

解: ∵一次函数 经过点(3,5)与(2,3)

解得

∴一次函数的解析式为_______________

像例1这样先设出函数解析式,再根据条确定解析式中未知的系数,从而具体

写出这个式子的方法,叫做待定系数法。

【展示交流】

1、已知一次函数 ,当x = 5时,y = 4,

(1)求这个一次函数。 (2)求当 时,函数y的值。

2、已知直线 经过点(9,0)和点(24,20),求这条直线的函数解析式。

3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现

已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2

厘米.求这个一次函数的关系式.

【合作探究】

例2:已知一次函数的图象如图所示,求出它的函数关系式

练习:已知一次函数的图象如图所示,求出它的函数关系式

例3:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。

深度(千米)。。。246。。。

温度(℃)。。。90160300。。。

(1)根据上表,求t(℃)与h(千米)之间的函数关系式;

(2)求当岩层温度达到1700℃时,岩层所处的深度为多少千米?

练习:为了学生的身体健康,学校桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套桌、凳上相对应的四档高度,得到如下数据:

(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);

(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.

例4:某自水公司为了鼓励市民节约用水,采取分段收费标准。居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示:

(1)分别写出 和 时,y与x的函数解析式;

(2)若某用户居民该月用水3.5吨,问应交水费多少元?

若该月交水费9元,则用水多少吨?

【达标拓展】

1、A(1,4),B(2,m),C(6,-1)在同一条直线上,求m的值。

2、已知一次函数的图像经过点A(2,2)和点B(-2,-4)

(1)求AB的函数解析式;

(2)求图像与x轴、y轴的交点坐标C、D,并求出直线AB与坐标轴所围成的面积;

(3)如果点(a, )和N(-4,b)在直线AB上,求a,b的值。

3、某市推出电脑上网包月制,每月收费y(元)与上网时间x(小时)的函数关系如图

所示:

(1)当 时,求y与x之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元

的上网费用?

(3)若小李5月份上网费用为75元,则他在该

月分的上网时间是多少?

4、某运输公司规定每名旅客行李托运费与所托运行李质量之间的关系式如图所示,请根据图像回答下列问题:

(1)由图像可知,行李质量只要不超过______kg,就可以免费携带。如果超过了规定的质

量,则每超过10kg,要付费_______元。

(2)若旅客携带的行李质量为x(kg),所付的行李费是y(元),请写出y(元)随x(kg)

变化的关系式。

(3)若王先生携带行李50kg,他共要付行李费多少元?

5、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据:

指距d(cm)20212223

身高h(cm)160169178187

(1)求出h与d之间的函数关系式

(2)某人身高为196cm,则一般情况下他的指距应为多少?

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.3.1 一次函数与一元一次方程

【学习目标】

1、进一步认识和理解一次函数,同时进一步巩固一元一次方程的解法。

2、弄通一次函数与x轴的交点与一元一次方程的解的关系。

【前置学习】

1、解方程2x+4=0

2、自变量x为何值时函数y=2x+4的值为0?

3、以上方程2x+4=0与函数y=2x+4有什么关系?

4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a≠0)?

5、当某个一次函数y=ax+b的值为0时,求相应的自变量x的值。从图像上看,相当于确定直线y=ax+b与x轴交点的横坐标的值。

6、仔细理解例1中的解法1与解法2有什么不同。

【展示交流】

1、解方程ax+b=0(a、b为常数,a≠0)

2、自变量x为何值时,一次函数y=ax+b的值为0,这句话与解方程ax+b=0(a、b为常数)到底有什么关系?

【合作探究】

一个物体现在的速度是3m/秒,其速度每秒增加2m/秒,再过几秒它的速度为11m/秒?

1)、此问题用方程解如何去解?

2)、画出y=2x-8的函数图象

如果速度y是时间x的函数,则上述问题与y=2x+3有什么关系?如何去解上述问题?

【达标拓展】

1)、当自变量x的取值满足什么条时,函数y=3x+8的值满足于下列条:

①、y=0 ②、y=-7

2)、利用函数图象解5x-3=x+2

整体感知

如何理解一次函数与x轴交点的横坐标与解方程的关系?

【堂检测】

A、基础知识巩固

1、当自变量x的取值满足什么条时,函数y=5x+7的值满足下列条

(1)、y=0 (2)、y=20

B、能力提升

当自变量x取何值时,函数y= +1与y=5x+17的值相等?

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

14.3.2 一次函数与一元一次不等式

【学习目标】、

1、会用一次函数的图像解一元一次不等式,理解一次函数与一元一次不等式的关系,

2、经历从“数”与“形”两个角度解决问题的过程,体会数形结合的思想。

3、利用一次函数的图像确定一元一次不等式的解集

【前置学习】

1、什么是一元一次不等式?它的解集是什么?

2、看下面两个问题有什么关系

(1)、解不等式5x+6>3x+10

(2)、自变量x为何值时,函数y=2x-4的值大于0?

3、由上面两个问题的关系,能进一步得到“解不等式ax+b>0与求自变量x在什么范围内一次函数y=ax+b的值大于0”有什么关系?

4、一元一次不等式与一次函数有什么联系?

任何一元一次不等式都可以转化为____________或_____________(a、b为常数,a≠0) 的形式,所以解一元一次不等式可以看作是:当一次函数值大(小)于0时,求________相应的______________

【展示交流】

用画函数图像的方法解不等式5x+4<2x+10

解法1:原不等式化为3x-6<0,画出直线y=3x-6,可以看出,当x<2时_______________________,即y=3x-6<0,所以不等式的解集为x<2.

[解析]

解法2:将原不等式的两边分别看作两个一次函数,分别为:y=5x+4与直线y=2x+10,在同一坐标系内画出图像

如图所示,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10的下方,所以不等式的解集为x<2.

【合作探究】

用画图像法解不等式,首先要把不等式转化为函数的形式,根据图像判断不等式的解集,两种解法都把不等式转化为比较___________________的高低

如图:直线y=kx+b经过点A(-3,-2),B(2,4),根据图像解答下列问题:

(1)、求k,b的值

(2)、指明不等式 >0的解集

(3)、求不等式 >4的解

(4)、解不等式6x+8<-10

1、从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的

___________________的取值范围。

2、从函数图像的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所

3、理解y>0,y=0,y<0的几何意义:

一次函数y=kx+b,图像在x轴上方时,y____0,图像在x轴上时,y____0,图像在轴下方时,y____0.

【达标拓展】

1、已知一次函数y=kx+b的图像如图,当x<时,y的取值范围是( )

A、y>0 B、y<0 C、-2<y<0 D、y<-2

2、一次函数的图像如图,则它的解析式是_____________________.

当x=______时,y=0 当x_______时,y>0 当y_______时,x<0

3、利用函数图象解出x

(1)、5x-1=2x+5 (2)、6x-4<3x+2

4、利用函数图象解不等式

(1)、5x-1>2x+5 (2)、x-4<3x+1

5、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬

1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200 个,超过部分除

按上述规定外,每个产品再增加0.4元,求一个工人:

(1)完成100个以内所得报酬 y(元)与产品数x(个)之间的函数关系式。

(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函

数关系式。

(3)完成200个以上所得报酬y(元)与产品个数x(个)之间的函数关系式

【教学评价】

小组内合作任务完成情况:__________(组长评价:好、中、差)

达标练习完成情况:__________(教师评价:好、中、差)

【教学反思】

中考数学二次函数2复习

节第三题

型复习教法讲练结合

教学目标(知识、能力、教育)1.理解二次函数与一元二次方程之间的关系;

2.会结合方程根的性质、一元二次方程根的判别式,判定抛物线与 轴的交点情况;

3.会利用韦达定理解决有关二次函数的问题。

4.会利用二次函数的图象及性质解决有关几何问题。

教学重点二次函数性质的综合运用

教学难点二次函数性质的综合运用

教学媒体学案

教学过程

一:【前预习】

(一):【知识梳理】

1.二次函数与一元二次方程的关系:

(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0

时的情况.

(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元 二次方程ax2+bx+c=0的根.

(3)当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二 次方程y=ax2+bx+c有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程y=ax2+bx+c没有实数根

2.二次函数的应用:

(1)二次函数常用解决 最优化问题,这类问题实际上就是求函数的最大( 小)值;

(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.

3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.

(二):【前练习】

1. 直线y=3x—3与抛物线y=x2 -x+1的交点的个数是( )

A.0 B.1 C.2 D.不能确定

2. 函数 的图象如图所示,那么关于x的方程 的根的情况是( )

A.有两个不相等的实数根; B.有两个异号实数根

C.有两个相等实数根; D.无实数根

3. 不论m为何实数,抛物线y=x2-mx+m-2( )

A.在x轴上方; B.与x轴只有一个交点

C.与x轴有两个交点; D.在x轴下方

4. 已知二次函数y =x2-x—6

(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;

(2)画出函数图象;

(3)观察图象,指出方程x2-x—6=0的.解;

(4)求二次函数图象与坐标轴交点所构成的三角形的面积.

二:【经典考题剖析】

1. 已知二次函数y=x2-6x+8,求:

(1)抛物线与x轴J轴相交的交点坐标;

(2)抛物线的顶点坐标;

(3)画出此 抛物线图象,利用图象回答下列问题:

①方程x2 -6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.所以与x轴交点为(2,0)和(4,0)当x1=0时,y=8.所以抛物线与y轴交点为(0,8);

(2)∵ ;∴抛物线的顶点坐标为(3,-1)

(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0.

2. 已知抛物线y=x2-2x-8,

(1)求证:该抛物线与x轴一定有两个交点;

(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P ,求△ABP的面积.

解:(1)证明:因为对于方程x2-2x-8=0,其判别式△=(-2)2-4×(-8)-36>0,所以方程x2-2x -8=0有两个实根,抛物线y= x2-2x-8与x轴一定有两个交点;

(2)因为方程x2-2x-8=0 有两个根为x1=2,x2=4,所以AB= x1-x2=6.又抛物线顶点P的纵坐标yP = =-9,所以SΔABP=12 AByP=27

3.如图所示,直线y=-2x+2与 轴、 轴分别交于点A、B,以

线段AB为直角边在第一象限内 作等腰直角△ABC,∠BAC=90o,

过C作CD⊥ 轴,垂足为D

(1)求点A、B的坐标和AD的长

(2)求过B 、A、D三点的抛物线的解析式

4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB

边向点B以1cm/s的速度移动,同时点Q从点B出发,沿 BC边向

点C以2cm/s的速度移动,回答下列问题:

(1)设运动后开始第t(单位:s)时,五边形APQCD的面积为S

(单位:cm2),写 出S与t的函数关系式,并指出自变量t的取值范围

(2)t为何值时S最小? 求出S的最小值

5. 如图,直线 与 轴、 轴分别交于A、B两点,点P是线段AB的中点,抛物线 经过点A、P、O(原点)。

(1)求过A、P、O的抛物线解析式;

(2)在(1)中 所得到的抛物线上,是否存在一点Q,使

∠QAO=450,如果存在,求出点Q的坐标;如果不存在,请说明理由。

四:【后小结】

布置作业地纲

教后记

九年级数学上册全册教案

题21.1二次根式(概念及基本性质)型新知3时

目标1.了解二次根式的概念及基本性质.

2.经历观察、比较、总结二次根式的基本性质的过程,发展学生概括、归纳能力.

3.通过对二次根式概念和基本性质的探究,提高数学探究能力和归纳表达能力.

4.学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的乐趣,并提高应用的意识.

重点二次根式的概念和基本性质.

教学难点二次根式基本性质的灵活应用.

教具准备

教学过程主要教学过程个人修改

【活动1】

学生根据所学知识填写本第2页“思考”栏目,教师提问:

⑴所填的结果有什么特点?

⑵平方根的性质是什么?

⑶如果把上面所填的式子叫做二次根式,那么你能用数学符号表示二次根式吗?

(学生可能碰到的困难:①是否会想到用字母表示数;②是否能概括出 ≥0这一条.)

(备用问题)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

例1下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

例2 当x是多少时, 在实数范围内有意义?

【巩固练习】

1.本第3页练习1、2、3

2.本第3页“思考”栏目

【拓展应用】

例3 当x是多少时, + 在实数范围内有意义?

(答案:当x≥- 且x≠-1时, + 在实数范围内有意义.)

例4 (1)已知y= + +5,求 的值.(答案: )

(2)若 + =0,求a20xx+b20xx的值.(答案:0)

【归纳小结】 本节要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

【作业设计一】

一、选择题 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一个正方形的面积是5,那么它的边长是( )

A.5 B. C. D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个.

A.0 B.1 C.2 D.无数

5.已知a、b为实数,且 +2 =b+4,求a、b的值.

【活动2】

问题:比较 与0的大小.

结论: (a≥0)是一个非负数.即 ≥0. 具有双重非负性.

【做一做】根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

结论: ( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

【巩固练习】

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

【拓展应用】例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

【归纳小结】 本节应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0).

【作业设计二】

一、选择题

1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ).

A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( ).

A.a>0 B.a≥0 C.a<0 D.a=0

二、填空题

1.(- )2=________.

2.已知 有意义,那么是一个_______数.

三、综合提高题

1.计算

(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

(5)

2.把下列非负数写成一个数的平方的形式:

(1)5 (2)3.4 (3) (4)x(x≥0)

3.已知 + =0,求xy的值.

4.在实数范围内分解下列因式:

(1)x2-2 (2)x4-9 3x2-5

【活动3】问题:填空

=_______; =_______; =______;

=________; =________; =_______.

(老师点评):根据算术平方根的意义,我们可以得到:

=2; =0.01; = ; = ; =0; = .

因此,一般地: =a(a≥0)

例1 化简

(1) (2) (3) (4)

解:(1) = =3 (2) = =4

(3) = =5 (4) = =3

【巩固练习】

教材P5练习2.

【应用拓展】

例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题.

(1)若 =a,则a可以是什么数?

(2)若 =-a,则a可以是什么数?

(3) >a,则a可以是什么数?

分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时, = ,那么-a≥0.

(1)根据结论求条;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

解:(1)因为 =a,所以a≥0;新 标 第 一 网

(2)因为 =-a,所以a≤0;

(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

例3当x>2,化简 - .

【归纳小结】本节应掌握:

=a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展.

【作业设计三】

一、选择题

1. 的值是( ).

A.0 B. C.4 D.以上都不对

2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( ).

A. = ≥- B. > >-

C. < =

以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这

种函数观点认识问题的方法,对于继续学习数学很重要.

三、巩固练习

1.当自变量x的.取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.

2.利用图象解出x:

6x—4<3x+2.

[解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

(2)方法一:画出y=3x+8的图象,从图象上可以看出当x

方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x

2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.

方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.

四.随堂练习

1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

2.利用图象解不等式5x—1>2x+5.

五.课时小结

本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

六.课后作业

习题14.3─3、4、7题.

七.活动与探究

a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

教学反思:

本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

◆ 八年级一次函数的教案 ◆

成为教师后才发现当好教师不容易。结合一次函数的教学谈谈自己的几点肤浅感受、几处满意之笔、遗憾之点,以及对教材的几点不成熟的建议。

“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。

肤浅感受:

备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。

初二教材的教学时间不够,教参函数第一节第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课

在“2.一次函数的图象”中有平移的问题,

1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;

(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.

与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论

2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲

一次函数y=kx+b有下列性质:

(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;

(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

(3)当b>0时,这时函数的图象与y轴的交点在:

(4)当b>0时,这时函数的图象与y轴的交点在:

待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”

如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”

学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。

一次函数有以下令自己较满意的地方:

一.结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。

在本节课的引入部分采用班级里的真人真事(校运动会上,令全校师生兴奋不已的一幕:八(10)某同学在男子4×100米的接力赛中以惊人的速度赶超了原先的第一名,为十班夺得了冠军)。上此课是早上第三节了,再加上天气的原因,部分同学似乎精神不佳,令我非常担心这节课不能吸引学生。“在此跑步过程中涉及到哪些量?”“假定每位选手各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问句既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。

①对知识内容的完整性作了补充。

(附一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。)教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。(1)求y1关于x的函数关系式及自变量x的取值范围;(2)画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的`任一点画出射线;对于线段,取线段的两个端点然后连接即可。

为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例1中添加了画(2),问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整数点。

在讲解次序上,先解决(1)(2)(3)小题的作图,归纳方法;再解决如何求(1)(2)(3)小题的函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b)与x轴的交点坐标遗憾之处

一、时间把握不准。

由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上吧。

二、部分内容上处理出现失误:

初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)

函数与函数图象广泛运用到实际问题中,也是中高考的重难点,而一次函数和一次函数图象又是其他复杂函数与函数图象的基础,将这个基础地基打得扎实显得尤为重要,探究一次函数图象的特点的许多方法也同样适用于其他复杂函数图象。既然要学一次函数的图象,为何不将其相关知识要点继续深入下去呢?教材中对一次函数的图象只安排了两个课时,且第二课时讲的图象的增减性问题及其应用,而第一课时中对一次函数的图象的相关特点阐述得不怎么全面、完整,所以我想在原第一、二课时之间是否再增一个课时的内容,以便学生们更扎实地掌握知识。

◆ 八年级一次函数的教案 ◆

一、教学目标

1.使学生理解并掌握反比例函数的概念

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

二、重、难点

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

2.难点:理解反比例函数的概念

3.难点的突破方法:

(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

三、例题的意图分析

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入

1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

五、例习题分析

例1.见教材P47

分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数

(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

例2.(补充)当m取什么值时,函数是反比例函数?

分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

◆ 八年级一次函数的教案 ◆

一、教材分析

一教材的地位和作用

今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

二、教学目标

1.知识技能目标

(1)掌握一次函数的概念和解析式的特点;

(2)知道一次函数和正比列函数的关系;

(3)会利用一次函数解决简单的数学问题。

2.过程和方法

(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

(2)在教学过程中,让学生学会知识迁移、以及类比的思想。

3.情感和态度

(1)通过“登山问题”的研究,体会建立函数模型思想;

(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

三、教学重点

1.一次函数的定义和解析式的特点;

2.一次函数和正比列函数的关系;

3.一次函数定义的应用以及解决相关的问题。

四、教学难点

一次函数和正比列函数的关系以及一次函数的应用。

二、学情分析

学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

三、学法分析

用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点

四、教法分析

采用“引导------发现式”的教学法

五、教学过程

◆ 八年级一次函数的教案 ◆

【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问:    1、什么是函数?    2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)   (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)   (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)    (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)    由以上的层层设问,最后给出的定义。    一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的。    对这个定义,要注意:    (1)x是变量,k,b是常数;    (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)    由出发,当常数b=0时,kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。    在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。    写成式子是      (一定)    需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。    其次,要注意引导学生找出与正比例函数之间的关系:正比例函数是特殊的。三、课堂练习:    课本后练习第1题。四、答疑(老师在下面巡视,学生提问题)五、小结1)              什么是?它的解析式是什么?2)            正比例函数呢?六、课后作业 课本后习题1、2两题

◆ 八年级一次函数的教案 ◆

八年级数学下册《一次函数》知识点总结

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与,并且对于x的每一个确定的值,都有唯一确定的值与其对应,那么我们就说x是自变量,是x的函数.

三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的.图象.

五、用描点法画函数的图象的一般步骤

注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

六、函数有三种表示形式:

(图像法 (3)解析式法

七、正比例函数与一次函数的概念:

一般地,形如=x(为常数,且≠0)的函数叫做正比例函数.其中叫做比例系数。

一般地,形如=x+b (,b为常数,且≠0)的函数叫做一次函数.

当b =0 时,=x+b 即为 =x,所以正比例函数,是一次函数的特例.

八、正比例函数的图象与性质:

(1)图象:正比例函数= x ( 是常数,≠0)) 的图象是经过原点的一条直线,我们称它为直线= x 。

(2)性质:当>0时,直线= x经过第三,一象限,从左向右上升,即随着x的增大也增大;当<0时,直线= x经过二,四象限,从左向右下降,即随着 x的增大反而减小。

九、求函数解析式的方法:

待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

1.一次函数与一元一次方程:从“数”的角度看x为何值时函数= ax+b的值为0.

2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线= ax+b与 x 轴交点的横坐标

3.一次函数与一元一次不等式:

解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数= ax+b的值大于0.

所对应的的横坐标的取值范围.

十、一次函数与正比例函数的图象与性质

一 次 函 数

概 念如果=x+b(、b是常数,≠也叫正比例函数.

图 像一条直线

性 质>0时,随x的增大(或减小)而增大(或减小);

<0时,随x的增大(或减小)而减小(或增大).

直线=x+b(≠>二、三象限;

(三、四象限;

(三象限;

(二、四象限;

(三、四象限;

(四象限。

一次函数表达式的确定求一次函数=x+b(、b是常数,≠时,只需一个点即可.

5.一次函数与二元一次方程组:

解方程组

从“数”的角度看,自变量(x)为何值时两个函数的值相等.并

求出这个函数值

八年级一次函数的教案相关推荐

最新更新

更多

Copyright©2006-2025 亲子早教网 zj09.com 湘ICP备18025499号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。