整式的课件

2025-04-03 整式的课件

整式的课件(经典十二篇)。

【1】整式的课件

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸,这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。

整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:

一是各个单项式的系数相乘,

二是同底数幂相乘,

三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一部分的内容教学中,难点与易错点主要是:

一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

三、注意实际问题主要是图形的面积问题的正确解决。

【2】整式的课件

教学内容:

课本第66页至第68页.

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

教学后记:

①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。

②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。

③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则?另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。

【3】整式的课件

对于《整式》这一节内容,教材的安排是在学习列式和求值的基础上,分别介绍了单项式与多项式的概念及相关知识,然后在这些概念的基础上,下几节课逐步展开同类项的概念、合并同类项的法则以及去括号与添括号的法则,所以学好整式这节内容对于将来更进一步深入代数式的相关运算有着至关重要的作用。

这节课,我首先给出实际例子,让学生列出符合这些例子的相关式子,并让学生观察这些式子的'特点,从而引出单项式的定义,并强调一些注意点:

1、单独一个数字和字母也是单项式;

2、分母内不含有字母。

然后及时操练,让学生判断黑板上所给出的代数式是否为单项式,进一步掌握单项式的特点。然后再以“-”为例,介绍单项式的系数和次数,并指出常数需要注意的问题。然后以填空的形式,让学生及时得到巩固。并及时总结在求一个单项式的次数和系数时需要注意的问题。

接下去,多媒体继续给出一组涉及多项式的实际应用题,询问学生是否还能用单项式来解决,自然引出多项式的概念,并简单介绍多项式的相关概念。然后让学生找“-2x+5”和“-ab+5”的项以及各项的次数,然后告诉学生这两个多项式的次数分别为2次和3次,让学生自己来归纳判断一个多项式次数的方法,并给出一个多项式及时操练巩固。接着以例3和例4来进一步巩固多项式的相关知识。

最后,简单介绍一下整式的概念,并以判断题的形式进一步加深对整式的理解。以一组课内练习来介结束本堂课的教学任务。并给出思考题作为课后探究。

【4】整式的课件

第一课时

教学目标:

1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。

2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。

教学重点:

整式的乘法运算。

教学难点:

推测整式乘法的'运算法则。

教学过程:

一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。

跟着用乘法分配律来验证。

单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。

二、例题讲解:

例2:计算(1)2ab(5ab2+3a2b);

(2)解略。

三、巩固练习:

1、判断题:(1)3a3·5a3=15a3( )

(2)( )

(3)( )

(4)—x2(2y2—xy)=—2xy2—x3y( )

2、计算题:

(1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。

四、应用题:

1。有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?

五、提高题:

1。计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。

2。已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。

3。已知:2x·(xn+2)=2xn+1—4,求x的值。

4。若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。

小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:

第二课时

教学目标:

1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。

2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。

教学重点:

多项式乘法的运算。

教学难点:

探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题

教学过程:

一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。

二、巩固练习:1。计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。

三、提高练习:

1、若;则m=_____,n=________

2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a

3、已知,则a=______,b=______。

4、若成立,则X为__________。

5、计算:+2。

6、某零件如图示,求图中阴影部分的面积S。

7、在与的积中不含与项,求P、q的值。

一、小结:

本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。

六、作业:第28页习题 1、2

【5】整式的课件

整式的加减不仅在本章是难点,在整个学期的教学也是一个重点和难点。所以我将这部分的内容增加了课时,反复练习。首先我只给同学们做简单的例题和练习,让同学们很轻松愉快的学习,再逐步加深难度,采取一次只攻破一个类型的方式,攻破这个难点,让同学们觉得这不难,保持学习的热情。由于本班同学基础差,虽有热情但能力不足,很多同学分数的加减乘除运算很差,在正确去括号和找同类项之后无法得出正确结果。部分同学分析题意的能力不够好,常常看到题却不懂题意,无从下手。但总体来说,这个单元同学掌握的还可以,但是我们班的学生非常好动,而且非常马虎,系数是负数时,往往容易把“-”号漏掉,虽然已经强调了很多遍,但是个别的学生还是容易出现这样的错误,其次就是学生的有理数加法的知识遗忘比较快,不过关,所以这样的错误也很多,在以后的教学中我多思考这样的问题和教学方法,力争提高自己的教学水平,把教学落到实处!

【6】整式的课件

知识与技能:

1.理解单项式、单项式的系数、单项式的次数的概念;

2.能判断一个代数式是否为单项式;

3.会指出单项式的系数、单项式的次数。

过程与方法:通过单项式、多项式和整式的概念,知道他们与代数式之间的关系和区别。

情感态度与价值观:经历在具体情境中用代数式表示数量关系的过程,发展符号感。

教学重点:单项式、单项式的系数、单项式的次数的概念。

教学难点:单项式、单项式的系数、单项式的次数的概念。

教材分析:人们对具体事物的认识,一般要经历从具体到抽象,在从抽象到具体,不断往复,逐步提高的过程。本节中,整式的.概念、单项式的概念和次数,既是由数到式的抽象与升华,又是以后学习同类项,整式加减,乘除等知识的基础。同时也为以后学习分式运算、一次方程和函数等知识奠定了基础。另外,通过以往学习的经验,学生对单项式、单项式的系数、单项式的次数等概念的理解和掌握都有一定的难度。更重要的是通过单项式的系数的不同表现形式的教学,培养学生的符号意识和有条理地思考和语言表达能力。

请根据下列情境书写代数式:

1.一辆汽车以60千米/时的速度行驶了c千米,则这辆汽车的行驶时间为______小时。

2.长方形的长为m,宽为n,则两个这样的长方形的面积是______。教师出示幻灯片,学生思考,然后回答。

学生解答,教师点评,并给予鼓励。运用贴近学生生活的实例激发学生探究的兴趣。感受代数式的实际背景。同时启迪学生实际生活离不开数学。

3.电冰箱包装箱的形状是长方体,如果包装箱的底面形状是边长为a米的正方形,包装箱的高为h米,那么它的体积是______米3。

4.x的立方的相反数是______。

【7】整式的课件

有理数的学习是运用算术思维进行直观计算的过程,整式的学习则是运用代数思维进行非直观符号化运算的过程,它们之间既有联系又相互区别,因此整式的学习需要类比有理数的概念性质、运算法则等知识来完成。

在这一章的教学中,我首先从学生学过的有理数、一元一次方程、二元一次方程(组)等知识中涉及到的字母“代”数出发,引入字母表示数的概念,帮助学生理解较为抽象的字母表示数的意义,在此基础上归纳出代数式的概念,从而学习整式的相关概念;接着类比有理数的加减乘除乘方运算及其运算法则,学习相应整式的加减乘除乘方运算;最后介绍三个乘法公式和四种最简单常用的分解因式的方法。

结合学生的学习反馈,我认为在教学中应注意以下几个问题:

1.字母表示数是“代”数的基础,虽然学生对字母表示数有一定的感知,但教学时,要给学生充分机会理解字母表示数的意义及作用。比如3的倍数,算术上表示为3、6、9??,而代数上表示为3n。也就是说,3n不是指某一个数,而是代表了一组数3、6、9??,并且简洁明了地揭示出这组数的规律。

2.要进行数学思想方法的渗透。如列代数式就是将文字语言转化为符号语言的过程;求代数式的值隐含着一般到特殊的思想方法等等。

3.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数、同类项等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念。

4.帮助学生理解整式运算结果与有理数运算结果的差异。比如对于2+3=5,2+3是一种运算,得到的结果是5;而对于a+b,它既被视为一种运算,也被视为这种运算的结果,这与算术是有所区别的。

5.乘法公式是对特殊整式乘法的规律性描述,也是因式分解中运用公式法分解因式的基础,需要适度的练习巩固。学生容易犯的错误有:(a+b)^2=a^2+b^2,(a-b)^2=a^2-b^2等。

6.因式分解是整式中重要的恒等变形,它与整式乘法是互逆关系。教学时,要让学生掌握因式分解的方法“一提、二套、三分组”,并且强调因式分解必须在有理数范围内分解到不能分解为止。

总的来说,教师要有意识地培养学生算术思维向代数思维的过渡,具体数字运算向抽象字母符号运算的转变,这样,学生整式学习的任务也就能顺利完成了

整式的教学反思2

上完这节课后,本人反思如下:

1、本课知识点较多,所以梳理知识花了较多的时间,对于整式的运算,从合并同类相开始,然后是同底数幂的乘法,单项式的乘法,积的乘方,幂的乘方,这样从易到难,同学们教易接受。

2、课堂上给学生练习的时间不够,对于一部分概念复习之后,应当马上配上相应的练习,这样更有利于学生的当堂巩固。

3、练习的难度应当和课本贴近,这样使学生听过之后马上能做,让他们体验学习的成就感,这样更有利于激发他们的学习的积极性。

4、应当认真学习考试说明,对于中考的要求能做到心中有数。这样就不会把单项式的除法也作为掌握要求了。

5、应当留一些时间学生板演,这样便于让学生自己发现问题,最好让学生自己订正,通过相互间的讨论,印象会更深刻。

6、对于课后小结,要鼓励学生自己写,自己讲,只有通过他们自己的思考得到的东西,印象才会更深刻。

7、复习课的例题要精挑细选,让学生做最少的题目,达到良好的效果。

如何使复习课更为有效呢?下面我就将自己的点滴感受总结如下:

一、教学内容要精

复习课是对所学内容进行一个系统地复现,巩固与内化的教学活动,同时,它又是一个有针对性地诊断教学。通过一定的复习,老师应解决一些学生混淆不清的知识,弥补一定的知识漏洞,并帮助他们建构起自身的知识体系。所以,我觉得在复习课前对教学内容进行筛选和重组是必要的。我们需要总结出知识点之间的关联性,提炼出知识点的重中之重以及罗列出学生容易犯错的知识点,然后重组教学内容,经过这样的筛选之后,教学内容更有针对性,课堂教学也更为有效了。

二、教学切入点要准

内容确定了,我们就要找准教学切入点,能在问题症结处对症下药,使学生更好的理清知识联系,帮助他们建构起自己的知识体系。比如,把动词的不同形式作为教学切入点展开教学,然后展现使用这三种结构的.不同句型,最后要求学生柔和这些句型进行表达,由浅入深,层层推进,这样教学思路更为清晰,学生在建构知识体系时也更容易了。

三、教学环节衔接要顺

优秀课的特点之一就是流畅,因为环节之间的紧密相扣,知识点之间地自然过渡,能紧紧吸引学生注意力,让学生在不知不觉中完成知识的转换,从而,大大提高课堂效率。所以我们要能够巧妙地整合教学内容,创设情景,不断激发学生运用语言的欲望。比如,从自我介绍入手,介绍自己喜欢做的事,介绍自己的学校,转而引入学生的学校,一步一步地实现了知识的重现和运用。

四、教学方式要新

复习课既然是对所学知识的复现,那势必会存在一定的重复,而重复教学却是教学中最忌讳的,因为学生生性好奇,他们热衷于新鲜的事物,一旦一样东西重复两次以上,他们就会感到索然无味,失去学习兴趣。既然学习内容上的重复是不可避免的,那我们就应该尽量减少在教学方式上的重复。通过多种渠道丰富课堂教学资源,充分利用学生资源,课本资源及多媒体资源,采用比一比,赛一赛,说一说等多种方式开展活动,而且内容都是非常贴近学生生活,能够引起他们的学习共鸣。

五、练习设计要精而全

在复习课上增加适量的笔头练习是必要的。一方面,写作能力也是学生应具备的能力之一,另一方面,适当的笔头练习可以及时向老师反馈学生的学习状态,便于老师及时调整以下的教学步骤。讲练结合,精讲精做,针对主要教学内容设计习题,在习题设计上充分考虑到了层次性,既有深度,又有广度。操作过程中,即讲即练即反馈,及时解决学生在学习过程中碰到的问题与困惑。

【8】整式的课件

一、教学目标

(一)知识与技能

1.能概括、理解单项式乘法法则。

2.会进行单项式的乘法运算。

(二)过程与方法

探索单项式乘以单项式的运算法则,体会乘法交换律、结合律的作用和转化的思想。

(三)情感、态度与价值观

通过解决实际问题,体会数学知识的应用价值。促进学生在独立思考的基础上,能积极与他人合作交流,并且敢于发表自己的观点,以增强学生的自信,让他们在学习中体会成功的快乐,并且培养学生推理能力与计算能力。

二、学情分析

《整式的乘除与因式分解》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律的内容联系紧密,是对上述内容的拓展和延续,是对《整式的加减法》的后续学习,同时也是初中代数关于式的学习的重要内容。

而本节课——单项式乘以单项式用到了有理数的乘法、幂的运算性质,且后续的多项式与单项式的乘法,都要转化为单项式乘法,并为因式分解的学习奠定基础,所以单项式乘以单项式将起到承前启后的作用,在整式乘除法中占有独特地位.

因此在本节课教学中注重探讨单项式与单项式相乘的法则的形成过程。引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。

三、重点难点

重点:单项式乘法法则及其应用。

难点:理解运算法则及其探索过程,单项式与幂的混合运算。

四、教学过程

4.1第一学时

教学活动

活动1【讲授】单项式与单项式相乘

(一)温故知新,创设情境,引入新课

指出下列公式的名称

同底数幂的乘法

幂的乘方

积的乘方

(二)探究新知

你会计算下列各式吗?

(1) 4x3·5x2

(2) -4x2y·5xy

(3) -2x2y·(-3 xy2)

(三)例题讲解

例1. 4a2x5·(-3 x2)

1.引导学生具体的分析例题。

2.应用乘法的运算律,详细的解答例题。

3.得出结论,重点强调:各系数的积做为积的系数;相同字母的指数的和作为积里这个字母的指数;对于只在一个单项式里出现的字母,则连同他的指数作为积的一个因式。

从以上的运算过程中,和学生一起归纳出单项式与单项式相乘的法则吗?

单项式与单项式相乘的法则:

单项式与单项式相乘,把系数、同底数幂分别相乘;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注:单项式与单项式相乘结果仍然是单项式。

(四)巧解巧练

算一算

【 设计意图】让学生学会使用单项式与单项式相乘的法则,灵活应用同底数幂相乘底数不变,指数相加的性质。

(1) 3x2·5x3=15 x5

引导学生一起解答,应用单项式乘单项式运算法则。

解:(3*5)(x2 ·x3 )

=15 x5

(2)(-4a2b)·(-2a)= 8a3b

引导学生一起解答,应用单项式乘单项式运算法则。

解:【(-4)*(-2)】·(a2·a) ·b

=8a3b

(五)课堂小结

单项式乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式。

由单项式的乘法法则可以得到:单项式与单项式相乘实际上是转化为数与数,同底数幂相乘的运算. 本节利用乘法交换律、结合律和幂的运算性质研究单项式与单项式相乘的法则,在本节课教学中注重探讨单项式与单项式相乘的法则的形成过程,引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。

(六)布置作业

P99 (1、2)

P104 ( 3 )

(七)板书设计:

14.1.4 单项式乘单项式

1.温故知新

2.例题讲解

3.巧解巧练

4.算一算

(1)3x2·5x3=15 x5

(2)(-4a2b)·(-2a)= 8a3b

五、教学反思

本节课学生的积极性很高,课前的自主探究学习很充分,从通过温故知新以及学生通过具体的练习,从而探讨出乘法法则到自己独立应用法则,学生的思维一直处于积极活动的状态。在探讨法则的过程中,学生也出现了一些错误,这时提醒学生考虑自己每一步的算理,做到步步有理有据,培养学生严密的思维能力和解决问题的能力。利用法则提炼出解题步骤是很有必要的,使学生既理解了法则,又能灵活应用法则,找到学习的方法,提高了学生学习数学的积极性。

从本节课学生的学习来看,学生对于应用单乘单法则问题不大,但是做错题的几率很大,原因主要是幂的三个运算法则及合并同类项在混合应用时学生特别容易出错,这方面还要利用以后单项式乘以多项式及多项式乘以多项式的教学让学生更加熟练的应用各种法则,明确每一步的算理,那么如何解决好这个问题,应从以下几方面来加强:

(一)关注对教学难点的教学。新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

(二)关注对学生学习方法的指导。建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。利用错题和“小老师”的方法,激励了学生们学习数学的兴趣。

(三)把握启发引导的发散性和针对性。教学目标的多样性决定了教学中教师在启发引导时不能“牵着学生的鼻子走”,应该让学生有充分展示自己思维的角度与方法,体会到前面所学的幂的运算在本节课的重要性。使学生从具体的对数的思考引领到对整个幂的运算中内在规律的思考上来。

通过本节课的教学实践,我再次体会到:学生才是课堂的主人。教师是引导者,是参与者。本课中各知识点均是学生通过探索发现的,让学生充分经历探索与发现的过程。通过练习训练又对法则进行了更深刻的理解,这也是学生学习能力的体现。在今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生的终身需要,为学生的终身发展奠定基础。

【9】整式的课件

教学目标

1.知识与技能:掌握去括号法则,运用法则,能按要求正确去括号.

2.过程与方法:通过去括号法则的推导,培养学生观察能力和归纳能力;通过去括号法则的应用,培养学生全方位考虑问题的能力.

3.情感态度与价值观:让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流,在探索中体验成功的快乐.

教学重点

本节课的重点是去括号法则及其应用.

教学难点

点是括号前面是“—”号,去括号时括号内各项要变号的理解及应用.

教学准备

多媒体课件

教学过程

一.创设情景,激活思维

1.根据题意,列代数式

① 周三下午,校阅览室内起初有a 名同学.后来某班级组织同学阅读,第一批来了b 位同学,第二批来了c 位同学.则阅览室内共有多少同学?你能用两个代数式表示吗?

② 若阅览室内原有 a名同学,后来有些同学因上课要离开,第一批走了b 位同学,第二批走了c 位同学.试用两种方式写出阅览室内还剩下的同学数.

(点评:选取了学生熟悉的教学资源为背景,提出问题,引入新课,调动学生的学习积极性.)

二.积极探索,活跃思维

1.观察上面①中的两个代数式,它们的运算顺序一样吗?结果一样吗?②中的两个代数式呢?试用数学语言表示你的发现.

2.请同学们思考一下,你周围还有没有与问题①和②相仿的问题,把它提出来.(点评:在得出a+(b+c) =a+b+c和 a-(b+c) =a-b-c后,并不是按惯例马上就引导推出去括号的法则,而是继续让学生提出类似的问题,让学生参与进来,感受并理解去括号法则.)

例如本章引言中的问题:

(1)+120(t-0.5)=+120t-60

(2)-120(t-0.5)=-120t+60

3.再请大家观察 a+(b+c) =a+b+c和a-(b+c) =a-b-c 这两个式子,它们有什么特点?

4.由上面的分析探索,体会应该如何去括号?试用文字语言表达你的结论.

(点评:通过让学生自主探究,体验新知的产生过程,由感性认识上升到理性认识.)

概括:去括号法则:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;

括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.

三.典型例题,知识迁移

例题1

(1)a+(b-c) (2)a-(b-c)

(3)a+(-b-c) (4)a-(-b-c)

(点评:应用新知,解决问题,突出学生自主学习.)

例题2.化简下列各式:

(1)8a+2b+(5a-b);??

(2)(5a-3b)-3(a2 -2b).

(点评:应用新知——去括号,同时复习旧知——合并同类项,在解决问题的过程中为后面“整式的加减”埋下伏笔.突出学生自主学习.)

例题3两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

注意:顺水速度=静水速度+水速

逆水速度=静水速度-水速

解:(1)2小时后两船相距:

2(50+a)+2(50-a)=100+2a+100-2a=(千米

(2)2小时后甲船比乙船多航行

2(50+a)-2(50-a)=100+2a-100+2a=4a(千米)

四.巩固提高,体验成功

练习:课本67页1,2

五.课堂

今天你有哪些收获?

六.作业设计

课本第70页 1、 2.2 3,4,5?? 2、选做课本70页 2.2? 7,8

课后反思

去括号这节内容,看似容易,实际上是学生最易出错的地方.整式的加减与有理数运算中,学生最容易搞错的地方就是括号和符号.在去括号这节内容的教学中,教师决不能疏忽大意.

【10】整式的课件

本节课属于概念介绍课,主要学习多项式、多项式的项、多项式的次数等几个概念,要使学生通过学习能理解这些概念,并会利用所学知识确定多项式的项和次数。

我发现:通过自己看书,大部分学生对“多项式的概念”基本上都能理解,只是在“多项式的项”“多项式的次数”这两个概念的理解上出现了困难。因此,我在授课时,向学生介绍了以加、减号为分界线把多项式带符号分段的方法,解析“项”的概念,然后逐项逐项在单项式的有关知识的基础上求出各项的次数,解析“最高次项”,进而解析“多项式的次数”。学生在这样详细的剖析中,就把刚才在课本中阅读到的相关概念慢慢地转化为相应的数学符号,理解这些概念。

从学生完成后面的练习的情况来看,学生对本课的学习内容还是掌握得比较好,达到了教学目标,完成了教学任务。

本节课的可取之处与今后需要改进的地方:

这节课的教学内容并不难,单纯地从学生接受知识的角度,讲授法应该效果更好。但同时学生的自主学习的习惯和能力也不知不觉地被忽略了。事实证明,学生没有养成一个良好的自主学习的.习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约。所以这节课我先安排十分钟左右的时间让学生自己看书完成书本上的题目,虽然表面上看,浪费了不少时间,导致课堂的时间比较紧张,但是,从学生的长远发展出发,我还是觉得应该采用这种模式,使学生在起始年级开始养成一个好的学习习惯,对他们应该是有利无害的。这样的教学方法在今后的教学中我还要多加以运用。

但是,我也发现:几个本来并不难理解的知识点,比如“多项式的项”、“多项式的次数”,如果学生有一定的数学学习的基础和独立分析问题的能力,应该可以自己顺利完成学习,但事实上,必须由老师不断加以点评、分析,学生才能较准确地把握相关语句的含义,说明学生对数学语言的理解和表达还是存在较大困难。这个让学生阅读课文的习惯必须要进一步培养。

总之,一堂课的教学总存在这样那样的遗憾,教师要在不断的思考和总结中调整,才能适应学生的要求,适应教材的变化和课标的要求。

【11】整式的课件

无论我对一节数学课多么认真备课,准备的非常充分,但讲完后及时进行冷静思考,对它们进行回顾,总结,并做出深刻的反思,总感觉有不尽人意的地方。通过反思能有效地改进自己的教学行为,从新定位教学活动中学生和教师的角色

通过深入反思我教授的《二次函数》的一节课,使我的教学在今后扬长避短,把自己的教学水平提高到一个新的境界和高度。

反思一:三维目标是否能在课堂很好的实现。

本节内容的知识技能目标是理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数。能力目标是能选择、处理数学信息,并做出合理的推断或大胆的猜测,能结合具体情境发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效解决问题。情感目标是乐于接受生活中的数学信息,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。本节课知识目标和能力目标很好的完成,但在情感态度的教育不够深入,没有足够的重视。

反思二:在教学中教师究竟怎样把握契机

在教学中教师究竟怎样把握契机,促进教学的有效性,通过本节课,归纳起来可以是:

1 在知识的关键处、疑难处上进行引导,让学生准确的把握、深刻的领会学习的重点和难点。

2在学生认识的困惑处进行引导。

3在学生探索的迷惘处进行引导,为学生进行更广泛、更深入的探索创造条件。

反思三:创设问题情境是否有效

考虑到整式教学较难进行之处在于学生第一次接触整式相关内容,其抽象性不易理解与掌握,所以采取的教学策略是从学生感兴趣的欣赏图片引出探讨对象,容易引起学生兴趣,从而进入探索过程。课堂组织形式采用引导探究模式,充分调动学生积极性,引导学生观察,验证、归纳单项式的次数和系数。这个问题一的设置与教学,基本上适合学生的认知情况,但难度较大,其探讨比较适合层次比较高的`学生,或者教学可设置为课前学生预习,这样在课堂教学时可降低难度,给学生思考的时间。

反思四:是否关注学生

教师和学生的互动,是课堂教学生成价值的必要形式,在讲授过程中,一位学生提出了“为什么常数的次数是0次”的问题,对这位爱钻研的学生我立即给出了高度评价和鼓励。我看到了学生的自信和学好数学的决心,我也感叹捕捉课堂瞬间的灵感是多么重要啊!上课时,某些学生绝妙的问题,见解即质疑等都是课堂教学中自然生成的学习资源。教学是个师生相长的过程,灵感是师生相互碰撞时精彩的火花。

静心反思这节课教法上有哪些创新,组织教学方面有何新招,解题的足多误区有无突破,训练是否到位等。

总之,重视反思,及时反思,深入反思,有效反思,并持之以恒,是我成长的不竭动力,是教师不断超越自我、提高教育有效性的必由之路。

【12】整式的课件

整式的加减是承有理数的加减、乘、除、乘方的运算,续整式方程的一系列运算,是学生从小进入初中含有字母运算的变化,认知上有新的突破,在教法引入过渡中,有其奥妙学法教法值得反思。

一、注意与小学相关内容的衔接

整式及其相关概念和整式的加减运算,与列代数式表示数量关系密切联系,而同整式表示数量关系是建立在同字母表示数的基础上的,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的'数量关系和简单方程。这些知识是学习本章的直接基础。因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。

二、加强与实际的联系

在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,加强了与实际的联系,无论是概念引出,还是运算法则的探讨,都是紧密结合实际问题展示的,在教学中,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学业生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。

三、类比数学习式,加强知识的内在联系,重视教学思想方法的渗透

整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,关于整式的运算与数的运算具有一致性,数的运算是式的运算的特殊情况,由学生已经学习了有理数的运算,能够灵活运用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。

四、抓住重点,加强练习,打好基础

整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。

    亲子早教网小编为您推荐整式的课件专题,欢迎访问:整式的课件

整式的课件相关推荐

最新更新

更多

Copyright©2006-2025 亲子早教网 zj09.com 湘ICP备18025499号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。