平行线的判定的教案(汇集9篇)。
作为一名为他人授业解惑的教育工作者,可能需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么问题来了,教学设计应该怎么写?以下是小编精心整理的平行线的判定教学设计,仅供参考,大家一起来看看吧。
平行线的判定的教案 篇1
教学内容:
平行线的认识
教学目标:
1、使学生初步,会判断同一平面上两条直线是否平行。
2、使学生知道两条平行线之间的距离相等,并会测量平行线之间的距离。
3、使学生会用两块三角板或一根直尺、一块三角板正确地画平行线。
教学重点:
认识平行线的特征,会用两块三角板或一根直尺、一块三角板正确地画平行线。教学难点:画平行线。
教学过程
(一)引入新课:
(1)什么叫垂线?相互垂直说明两条直线的位置怎样?
(2)相交的两条直线是不是一定垂直?
(3)二条直线除相交外,还有一种是什么?生活中有哪些可以看成是永不相交?
(4)今天我们来学习这种线。(出示课题:平行线)
(二)分析、讨论,得出结论:
1、从上面的例中,你能知道什么是平行线吗?学生:两条永不相交的直线叫做平行线。
2、这句话中完整吗?谁能提出反对意见?补充:在同一平面内。
3、平行线也可以叫相互平行。怎样用相互平行来描述下面两条线呢?AB
4、刚才我们说火车轨道可以看成平行线,因此要求枕木怎样才能符合要求?为什么一定要求枕木必须长度相等?你看到过平行线吗?请举例说明。
5、根据这个事实,你认为平行线应具有什么特征?结论:两条平行线之间的(距离相等)。
6、大家讨论怎样画一条直线的平行线?
(1)画两条长度一样的垂线,再连接起来。
(2)还有其它方法吗?看书本P63自学这几种方法。
(三)实践应用,形成经验:
(1)判断下列各组线是否是平行线:(图)P64 1
(2)下列各组图中有几组是平行线:P64 2
(3)画平行线
(4)画这些直线的平行线P64 4
(5)过一点画这条直线的平行线:P64 5
(四)总结提高:
1、什么叫平行线。
2、怎样画平行线。
(五)作业:作业本
平行线的判定的教案 篇2
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法。
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导
1.教师教法:启发式引导发现法。
2.学生学法:积极参与、主动发现、发展思维。
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答。
(二)难点
使用符号语言进行推理。
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点。
2.通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片。
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课。
2.通过教师指导,学生探索新知,练习巩固,完成新授。
3.通过学生自己总结完成小结。
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程
创设情境,复习引入
平行线的判定的教案 篇3
教学过程
一、目标展示
二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、
如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。
学习目标一:了解平行线的'概念、平面内两条直线的两种位置关系。
题组一:
1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的位置关系b只有与两种。
3、下列生活实例中:
(1)交通道路上的斑马线;
(2)天上的彩虹;
(3)阅兵队的纵队;
(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:
4、通过画图和观察,可得两个平行公理:
①、经过点,一条直线平行于已知直线;
②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:
①、a与b没有公共点,则a与b;
②、a与b有且只有一个公共点,则a与b;
③、 a与b有两个公共点,则a与b;
6、过一点画已知直线的平行线有()
A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条
教学设计
1、落实教学常规,践行学校《教师日常教学行为要求》。
2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。
平行线的判定的教案 篇4
教材分析
这部分内容是在学生认识了点和线段,以及射线、直线的基础上安排的,先认识直线直线的平行,在识别直线相交和不香相交的基础上认识平行线,学会画平行线。这节内容也是进一步学习空间和图形的重要基础之一。
学情分析
学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,在日常生活中能见到的`平行关系不注意,通过学习能成分认识平行线。
教学目标
1、使学生联系生活实际,体验直线的相交与不相交关系,认识两条直线互相平行,能判断两条直线互相平行,能判断两条直线的平行关系。
2、使学生能根据直线平行的意义,画出平行线;
3、培养学生的操作能力及空间观念;初步了解生活里的平行现象,产生学习图形位置关系的兴趣。
教学重点和难点
1、结合生活场景,使学生感知平面上两条直线的平行关系,认识平行线。
2、能借助直尺、三角板等画出平行线。
教学过程
(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。)
平行线的判定的教案 篇5
学习目标:
1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的'计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:
邻补角和对顶角的概念及对顶角相等的性质。
学习难点:
在较复杂的图形中准确辨认对顶角和邻补角。
学具准备:
剪刀、量角器
学习过程:
一、学前准备
1、预习
2、填空:
①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。
②同角或的补角。
二、探索与思考
(一)邻补角、对顶角
1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
平行线的判定的教案 篇6
教学目标:
1.能折出两条互相平行的折痕。
2.借助三角尺找出互相平行的边。
3.培养同学们实际动手操作的能力以及分析问题、解决问题的能力。
教学重点:
理解平行线的概念。
教学难点:
理解平行线的概念。
教学过程:
一、导入新课
1.复习提问:在同一平面内两条直线的位置关系可能有几种情况?然后出示局部城区地图。
2.提问:请指出哪些路同时垂直于同一条路?
3.师:在同一平面内,两条直线相交的关系之外,还有象上面不相交的情况。我们今天就研究两条不相交的直线的关系,这就是平行线。(板书课题)
二、教学新课
1.认识平行线。
(1)出示长方形图片。教师把长方形的两条长边分别向相反方向延长,成为两条直线。请同学们看一看,这两条直线会相交吗?
指出:长方形的两条长边延长后,这两条直线不会相交。请同学们打开练习本看一看,(老师出示练习本说明)如果延长练习本上的两条横线,得到的两条直线会相交吗?指出:练习本上的两条横线也不会相交。
追问:长方形的两条长边、练习本上的两条横线所在的直线,都有怎样的特点?
(2)出示三组直线,判断:哪一组的直线不相交?刚刚讲的的几组直线都有什么特点?(都是不相交的)指出:在同一平面内不相交的`两条直线,叫做平行线。(板书:在同一平面内)
(3)出示四组图片,要求找出其中的平行线。
(4)认识平行线的性质。出示两条平行的直线。提问:这两条直线的位置关系怎样?
出示在两条平行线之间的几条垂直线段,量一量它们的长度,找出共同点。(学生操作,指名答。)
提问:你发现平行线之间的垂直线段的长度有什么共同特点?指出:平行线之间的距离处处相等。
2.小结:你对平行线有什么认识?什么是平行线?
三、巩固练习
1.出示几组直线,判断:哪几组的两条直线是平行的,哪几组不平行?(用画平行线的方法检验)
2.用纸折出平行的折痕并标上字母。
3.小组同学说说哪些线是互相平行的?
4.独立完成用三角尺在下面图形中找出互相平行的边(书第55页)
平行线的判定的教案 篇7
教学目标:
1、了解两条平行线的所有公垂线段都相等。
2、了解两条平行线之间距离的意义。
3、能度量两条平行线之间的距离。
教学重点:
理解平行线之间的距离的意义。
教学难点:
理解“两条平行线的所有公垂线段都相等”。
教学过程:
一、情境问题
1、点到直线距离。
2、直线外一点与直线上各点连结的所有线段中,垂线段最短。
3、三条直线的平行关系。
二、新课学习
1、做一做。
测量自己的数学课本的宽度。要注意什么问题?刻度尺要与课本两边互相垂直。
2、公垂线、公垂线段的概念
与两条平行直线都垂直的直线,叫做这两条平行直线的公垂线。如图形中的直线AB与CD都是公垂线,这时连结两个垂足的线段,叫做这两条平行直线的公垂线段。如图中的线段AB和CD。
两平行线的公垂线段也可以看成是两平行直线中一条上的一点到另一条的垂线段。
3、公垂线段定理:两平行线的所有公垂线段都相等。
4、两平行线上各取一点连结而成的所有线段中,公垂线段最短。
如图m∥n,直线m、n上各取一点A、B,连结AB。
再过A作n线段的垂线段AC,垂足为C,则有AC<AB。
从而得到上述定理。
5、两平行间的距离:两平行线的公垂线段的长度。
6、P106说一说
我们可以把直线与直线的距离思转化为点到直线的距离。
7、例题示范
P105例如图设直线a、b、c是三条平行直线。已知a与b的距离为5厘米,b与c的距离为2厘米,求a与c的距离。
(引导学生分析,然后按教材写出解题过程:
解:在直线a上任取一点A,过A作AC⊥a,分别交b、c于B、C两点,则AB、BC、AC分别表示a与b,b与c,a与c的公垂线段。AC=AB+BC=5+2=7,因此a与c的距离为7厘米。
三、实效训练
1、如图,MN∥AB,P,Q为直线MN上的任意两点,三角形PAB和三角形QAB的面积有什么关系?为什么?
2、如图的四边形中,∠A=∠B=∠C=∠D=90°,这样的四边形叫做矩形。矩形的两组对边AB和BC相等吗?为什么?
四、课堂小结
五、课后作业
P106的A组第1,2题
六、拓展练习
1.如图1,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=。
2、如图2,ED∥BC,AF⊥ED,EH⊥BC,且AF=5㎝,EH=2㎝,求点A到ED的距离。
3、有一条直的等宽纸带,按图3折叠时,纸带重叠部分中的∠a=度。
平行线的判定的教案 篇8
一、目标分析
1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
二、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
三、教学过程
1、创设情境引入
(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。(5)平行线的性质和平行线的判定区别:要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5
(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。
(4)练习P174—175第1、2、3、4题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的`知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计P175第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
四、说板书设计平行线的性质
1、平行线的性质:
性质1:例题:练习:性质2:性质3:
2、平行线的性质与判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
五、自我评价
本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强
平行线的判定的教案 篇9
教学目标:
1、认识平行线的特征,并能利用平行线的三个特征解决问题;
2、认识平移,理解平移的特征,能够按要求作出简单图形平移后的图形;
3、进一步进行数学语言的训练;
4、通过学生探索平行线的三个特征,让学生在学习活动中经历知识获得的过程,体验成功的`喜悦。
教学重难点:
重点:平行线的三个特征,并能利用特征解决问题
难点:区分平行线的识别与特征。
教学准备:
方格纸
教学过程:
一、探索
1、要求学生用三角板和直尺画出两条平行线。
提问:如图,画直线a∥b,把直尺看作是截线c,∠1、∠2有什么关系?那么是不是任意一条直线去截a、b所得的同位角都相等呢?请大家在下面检验一下。
2、根据上面的操作过程,你能得出什么结论?板书:两直线平行,同位角相等。
3、板书课题:平行线的特征
二、归纳总结1、组织学生分组讨论如图,如果知道直线a∥b,根据平行线的特征,你能得到∠2、∠3的关系吗?∠4与∠2呢?根据学生得出结论,强调数学语言的训练:如:∵a∥b,根据平行线的特征,∴∠2=∠32、归纳平行线的三个特征。
三、平行线的特征的应用例1、如图,已知直线a∥b,∠1=求∠2的度数.解:∵a∥b,根据两直线平行,内错角相等,∴∠2=∠1.又∠1=,∴∠2=问:能否求出∠3、∠4的度数?
例2、如图,在四边形ABCD中,已知,AB∥CD,∠B=,求∠C的度数.能否得到∠A的度数?解:由于AB∥CD,根据两直线平行,同旁内角互补,可得∠B+∠C=,又∠B=,∴∠C=根据题目的已知条件,无法求出∠A的度数。
课堂练习:课本第174页第1、2题口答。例3、将下图中方格纸中的图形向右平行移动4格,再向上平行移动3格,画出平移后的图形。