初中数学二元一次方程教案模板范文(优质8篇)。

作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学二元一次方程教案模板范文 篇1

一、教学目标

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

过程与方法目标:

经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

情感与态度目标

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

二、重点、难点

重点:二元一次方程的概念及二元一次方程的解的概念。

难点

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

四、教学过程

创设情境导入新课

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

师生互动探索新知

1、发现新知

引导学生观察所列的方程:这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

2、巩固新知

判断下列各式是不是二元一次方程(1)(2)(3)(4)

3、师生互动再探新知

(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)

若未知数设为,记做,若未知数设为,记做。

4、检验新知

(1)检验下列各组数是不是方程的解:(学生感悟二元一次方程解的不唯一性)

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

5、自我挑战,三探新知

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

五、总结

比较一元一次方程和二元一次方程的相同点和不同点。

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

初中数学二元一次方程教案模板范文 篇2

一、教材的地位与作用

在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础的作用。

二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。

二、教学目标

1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。

2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。

3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)

4、情感体验:

①在列方程组-表示和解决实际问题的过程中,体验到数学的实用性,提高学习数学的兴趣。

②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与他人交流。

三、教学重点、难点

重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次

方程(组)及它们解的.含义。

难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探

求。

四、教法

(1)启发式教学

(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)

(2)学案式教学

(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)

五、学法

在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提

出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。

六、教学过程

(一)复述回顾:以二人小组完成学案上的3个问题;

(二)创设情境――引入课题

鸡兔同笼

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?

让学生用一元一次方程解决问题

设一个未知数列一元一次方程来解

就会出现方程:2x+4(35-x)=94(设鸡x只)...........①

4x+2(35-x)=94(设兔x只)............②

让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正

题--二元一次方程组。

(三)设问导读与自我检测

同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小

组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导、

生对新知识的探究。

1.对鸡兔同笼问题列方程,设鸡x只,兔y只,

X+y=35........③

2x+4y=94......④

先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让

学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方

程,马上做自我检测第一题,发现问题解决问题。

2.前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让

学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。

初中数学二元一次方程教案模板范文 篇3

一、内容和内容解析

1.内容

代入消元法解二元一次方程组

2.内容解析

二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

在平面直角坐标系中求两直线交点坐标等。

解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。

二、目标和目标解析

1.教学目标

(1)会用代入消元法解一些简单的二元一次方程组

(2)理解解二元一次方程组的思路是消元,体会化归思想

2.教学目标解析

(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

(2)要让学生经历探究的过程。体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

三、教学问题诊断分析

1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

四、教学过程设计

1.创设情境,提出问题

问题1

篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

师生活动:学生回答:能。设胜x场,负y场。根据题意,得

我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4。显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

这节课我们就来探究如何解二元一次方程组。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫。

问题2 对比方程和方程组,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

师生活动:根据上面分析,你们会解这个方程组了吗?

学生回答:

由①,得y=10-x ③

把③代入②,得2x+(10-x)=16 x=6

设计意图:共同探究,体会消元的过程。

问题3 教师追问:你能把③代入①吗?试一试?

师生活动:学生回答:不能,通过尝试,x抵消了。

设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点。

教师追问:你能求y的值吗?

师生活动:学生回答:把x=6代入③得y=4

教师追问:还能代入别的方程吗?

学生回答:能,但是没有代入③简便

教师追问:你能写出这个方程组的解,并给出问题的答案吗?

学生回答:x=6,y=4,这个队胜6场,负4场

设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

师生活动:先让学生独立思考,再追问。在这种解法中,哪一步最关键?为什么?

学生回答:代入这一步

教师总结:这种方法叫代入消元法。

教师追问:你能先消x吗?

学生纷纷动手完成。

设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫。

2. 应用新知,拓展思维

例 用代入法解二元一次方程组

师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法。

3.加深认识,巩固提高

练习 用代入法解二元一次方程组

设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组。

4.归纳总结,知识升华

师生活动,共同回顾本节课的学习过程,并回答以下问题

1. 代入消元法解二元一次方程组有哪些步骤?

2. 解二元一次方程组的基本思路是什么?

3.在探究解法的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力。

5. 布置作业

教科书第93页第2题

五、目标检测设计

用代入法解下列二元一次方程组

设计意图:考查学生对代入法解二元一次方程组的掌握情况。

初中数学二元一次方程教案模板范文 篇4

教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

重点:

让学生实践与探索,运用二元一次方程解决有关配套与设计的'应用题

难点:

寻找等量关系

教学过程:

看一看:课本99页探究2

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金

水稻4人1万元

棉花8人1万元

蔬菜5人2万元

已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨?千米),铁路运价为1.2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

初中数学二元一次方程教案模板范文 篇5

知识要点

1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~

2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;

3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组

4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)

5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组

6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)

(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解

(2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)

一、例题精讲

分别用代入法和加减法解方程组

解:代入法:由方程②得:③

将方程③代入方程①得:

解得x=2

将x=2代入方程②得:4-3y=1

解得y=1

所以方程组的解为

加减法:

例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?

分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同的过程列两个方程,组成方程组

解:设平路长为x公里,坡路长为y公里

依题意列方程组得:

解这个方程组得:

经检验,符合题意

x+y=9

答:夏令营到学校有9公里二、课堂小结:

回顾本章内容,总结二元一次方程组的解法和应用。

三、作业布置:

P25A组习题

初中数学二元一次方程教案模板范文 篇6

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?

五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用

初中数学二元一次方程教案模板范文 篇7

教学目标:

1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

教学过程:

一、复习

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答

新课:

看一看课本99页探究1

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

初中数学二元一次方程教案模板范文 篇8

教学目标

1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型

3、引导学生关注身边的数学,渗透将来未知转达化为已知的`辩证思想。

教学重点

1、列二元一次方程组解简单问题。

2、彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

二、建立模型。

1、怎样设未知数?

2、找本题等量关系?从哪句话中找到的?

3、列方程组。

4、解方程组。

5、检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1、根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、y的方程,

是二元一次方程。求a、b的值。

2、P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42。习题2.3A组第1题。

后记:

2.3二元一次方程组的应用(2)

二元一次方程课件相关推荐

最新更新

更多