高一物理知识点总结(重点)超详细
2025-05-03 高一物理知识点总结(重点)超详细高一物理知识点总结(重点)超详细(必备19篇)。
◆ 高一物理知识点总结(重点)超详细 ◆
1.物体形状回体积发生变化简称形变。
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
1.物体具有恢复原状的性质称为弹性。
2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
4.μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<1。μ>
5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
6.条件:直接接触、相互挤压(弹力),相对运动/趋势。
7.摩擦力的大小与接触面积无关,与相对运动速度无关。
8.摩擦力可以是阻力,也可以是动力。
1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。
2.物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。
3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。
4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm
5.静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0・N(μ≤μ0)
6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。
◆ 高一物理知识点总结(重点)超详细 ◆
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:
①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:
①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2)重力的方向:竖直向下(即垂直于水平面)
说明:
①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:
①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:
①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
高一物理知识点总结梳理5篇分享
◆ 高一物理知识点总结(重点)超详细 ◆
(1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
B、两物体发生形变;
C、两物体发生了相对滑动;
D、接触面不光滑。
⒒动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:
①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ばЧ:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ス龆摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
B、相接触面不光滑;
C、两物体有形变;
D、两物体有相对运动趋势。
⒕材Σ亮Φ姆较颍鹤芨接触面相切,并总跟物体的相对运动趋势相反。
说明:
①运动的物体可以受到静摩擦力的作用。
②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。
说明:
①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②静摩擦力大小决定于正压力与静摩擦因数(选学)Fm=μsFN。
对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:
1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2、把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3、对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题
◆ 高一物理知识点总结(重点)超详细 ◆
1.定义:速度的变化量Δv与发生这一变化所用时间Δt的比值。
2.公式:a=Δv/Δt
3.单位:m/s^2(米每二次方秒)
4.加速度是矢量,既有大小又有方向。加速度的大小等于单位时间内速度的增加量;加速度的方向与速度变化量ΔV方向始终相同。特别,在直线运动中,如果速度增加,加速度的方向与速度相同;如果速度减小,加速度的方向与速度相反。
5.物理意义:表示质点速度变化的快慢的物理量。
举例:假如两辆汽车开始静止,均匀地加速后,达到10m/s的速度,A车花了10s,而B车只用了5s。它们的速度都从0m/s变为10m/s,速度改变了10m/s。所以它们的速度变化量是一样的。但是很明显,B车变化得更快一样。我们用加速度来描述这个现象:B车的加速度(a=Δv/t,其中的Δv是速度变化量)
加速度计构造的类型
A车的加速度。
显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。
注意:
1.当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运
2.加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F
和物体的质量M。
3.加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。
4.加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。
5.加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。
6.当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。
特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。
7.力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明
当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。
8.加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.
向心加速度
向心加速度(匀速圆周运动中的加速度)的计算公式:
a=rω^2=v^2/r
说明:a就是向心加速度,推导过程并不简单,但可以说仍在高
科里奥利加速度
科里奥利加速度
中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。
这里有:v=ωr.
1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
重力加速度
地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数
距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到。
由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:
赤道g=9.780m/s^2
广州g=9.788m/s^2
武汉g=9.794m/s^2
上海g=9.794m/s^2
东京g=9.798m/s^2
北京g=9.801m/s^2
纽约g=9.803m/s^2
莫斯科g=9.816m/s^2
北极地区g=9.832m/s^2
注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
匀加速直线动动的公式
1.匀加速直线运动的位移公式:
s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2
2.匀加速直线运动的速度公式:
vt=v0+at
3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):
v=(v0+vt)/2
其中v0为初速度,vt为t时刻的速度,又称末速度。
4.匀加速度直线运动的几个重要推论:
(1)V末^2-V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)
(2)AB段中间时刻的即时速度:
Vt/2=(v初+v末)/2
(3)AB段位移中点的即时速度:
Vs/2=[(v末^2+v初^2)/2]^(1/2)
(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;
(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);
(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)
(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。
(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
加速度-加速运动与减速运动
物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)
V=v末—v初
加速度公式:a=△V/△t
加速度-曲线加速运动
在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。
物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。
但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。
加速度-小问题——加速度单位的来历
根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2.
◆ 高一物理知识点总结(重点)超详细 ◆
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}●电场1.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差。公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U。
2.电势φ:电场中某点的电势等于该点相对零电势点的电势差。(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势)。因此电势有正、负,电势的正负表示该点电势比零电势点高还是低。(2)沿着电场线的方向,电势越来越低。
3.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU
(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功。
(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面。
(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等。这样,在等势面(线)密处场强大,等势面(线)疏处场强小。
机械振动和机械波(1)定义:物体所受的力跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。
(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
②特点:简谐运动的图像是正弦(或余弦)曲线。③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
◆ 高一物理知识点总结(重点)超详细 ◆
(二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)
2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式
2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空)
3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表示方式、合力提供向心力(计算题)
3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空)
4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算)
5离心运动:临界条件、静摩擦力、匀速圆周运动相关计算(选择、计算)
◆ 高一物理知识点总结(重点)超详细 ◆
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为
①按性质命名的力(例如:重力、_力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;
②改变运动状态.
2、重力:
由于地球的吸引而使物体受到的力。重力的大小g=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力由于重力远大于向心力,一般情况下近似认为重力等于万有引力.
◆ 高一物理知识点总结(重点)超详细 ◆
理解要点:
说明:①对某一物体而言,可能有一个或多个施力物体。
(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。
说明:①相互作用的物体能够直接接触,也能够不接触。
②力的大小用测力计测量。
(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。
(5)力的种类:
①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。
说明:根据效果命名的,不一样名称的力,性质能够相同;同一名称的力,性质能够不一样。
定义:由于受到地球的吸引而使物体受到的力叫重力。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
说明:①在地球表面上不一样的地方同一物体的重力大小不一样的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
说明:①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就能够把整个物体各部分的重力用作用于重心的一个力来表示,于是原先的物体就能够用一个有质量的点来代替。
说明:①任何物体都能发生形变,但是有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力务必产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型:
①轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不一样。
②点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。
③平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动状况,利用平衡条件或运动学规律计算。
(1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
』动摩擦力的产生条件:A。两个物体相互接触;B。两物体发生形变;C。两物体发生了相对滑动;D。接触面不光滑。
⒒动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ばЧ:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ァ9龆摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
【材Σ亮Φ牟生条件:A。两物体相接触;B。相接触面不光滑;C。两物体有形变;D。两物体有相对运动趋势。
⒕材Σ亮Φ姆较颍鹤芨接触面相切,并总跟物体的相对运动趋势相反。
②静摩擦力的方向能够与运动方向相同,能够相反,还能够成任一夹角θ。
③静摩擦力能够是阻力也能够是动力。
>材Σ亮Φ拇笮。毫轿锾寮涞木材Σ亮Φ娜≈捣段0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动状况,利用平衡条件或牛顿运动定律进行计算。
说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②最大静摩擦力大小决定于正压力与最大静摩擦因数效果:总是阻碍物体间的相对运动的趋势。
受力分析的程序是:
1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象能够是单个物体,也能够是几个物体组成的系统。
2、把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3、对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都务必明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
求几个共点力的合力,叫做力的合成。
(1)力是矢量,其合成与分解都遵循平行四边形定则。
(2)一条直线上两力合成,在规定正方向后,可利用代数运算。
②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
◆ 高一物理知识点总结(重点)超详细 ◆
1、命题的四种形式及其相互关系是什么?
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
3、 函数的三要素是什么?如何比较两个函数是否相同?
求反函数的步骤掌握了吗?
5、反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
6、 函数f(x)具有奇偶性的必要(非充分)条件是什么?
◆ 高一物理知识点总结(重点)超详细 ◆
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
举个例子,
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
数学知识点1.不等式性质比较大小方法:
②传递性: a > b, b > ca > c
④可积性: a > b, c > 0ac > bc
⑤加法法则: a > b, c > d a + c > b + d
⑥乘法法则:a > b > 0, c > d > 0 ac > bd
⑦乘方法则:a > b > 0, an > bn (n∈N)
数学知识点2.算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3.证明不等式的常用方法:
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,
则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
◆ 高一物理知识点总结(重点)超详细 ◆
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值
a=(vt—v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
用图象描述直线运动
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)
3.图象中两图线的交点表示两物体在这一时刻相遇。
◆ 高一物理知识点总结(重点)超详细 ◆
重力G(N)G=mg;m:质量;g:9.8N/kg或者10N/kg
密度ρ(kg/m3)ρ=m/Vm:质量;V:体积
合力F合(N)方向相同:F合=F1+F2[6]
方向相反:F合=F1-F2方向相反时,F1>F2
浮力F浮(N)F浮=G物-G视;G视:物体在液体的视重(测量值)
浮力F浮(N)F浮=G物;此公式只适用物体漂浮或悬浮
浮力F浮(N)F浮=G排=m排g=ρ液gV排;G排:排开液体的重力,m排:排开液体的质量,ρ液:液体的密度,V排:排开液体的体积(即浸入液体中的体积)
杠杆的平衡条件F1L1=F2L2;F1:动力,L1:动力臂,F2:阻力,L2:阻力臂
定滑轮F=G物,S=h,F:绳子自由端受到的拉力,G物:物体的重力,S:绳子自由端移动的距离,h:物体升高的距离
动滑轮F=(G物+G轮)/2,S=2h,G物:物体的重力,G轮:动滑轮的重力
滑轮组F=(G物+G轮)/n,S=nh,n:承担物重的段数
机械功W(J)W=FsF:力S:在力的方向上移动的距离
有用功:W有,总功:W总,W有=G物h,W总=Fs,适用滑轮组竖直放置时机械效率η=W有/W总×100%
功W=Fs=Pt;1J=1N·m=1W·s
功率P=W/t=Fv(匀速直线)1kW=103W,1MW=103kW
有用功W有用=Gh=W总–W额=ηW总
额外功W额=W总–W有=G动h(忽略轮轴间摩擦)=fL(斜面)
总功W总=W有用+W额=Fs=W有用/η
机械效率η=G/(nF)=G物/(G物+G动)定义式适用于动滑轮、滑轮组
功率P(w)P=W/t;W:功;t:时间
压强p(Pa)P=F/SF:压力/S:受力面积
液体压强p(Pa)P=ρghP:液体的密度h:深度(从液面到所求点的竖直距离)
热量Q(J)Q=cm△tc:物质的比热容m:质量,△t:温度的变化值
燃料燃烧放出的热量Q(J)Q=mq;m:质量,q:热值
◆ 高一物理知识点总结(重点)超详细 ◆
物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。
◆ 高一物理知识点总结(重点)超详细 ◆
(1)做功的两个条件:作用在物体上的力。
物体在里的方向上通过的距离。
(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)
1J=1N_
当0<=a<派2w="">0F做正功F是动力
当a=派/2w=0(cos派/2=0)F不作功
当派/2<=a<派W<0F做负功F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
◆ 高一物理知识点总结(重点)超详细 ◆
曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
高一物理知识点2
动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
◆ 高一物理知识点总结(重点)超详细 ◆
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。
2. 运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
1.F等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。
2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
电场 〖选修3--1〗
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
3.场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
恒定电流〖选修3-1〗
1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。
2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。
电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。
3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。
4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。
路端电压内压降,和就等电动势,除于总阻电流是。
磁场〖选修3-1〗
1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。
2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。
3.BIL安培力,相互垂直要注意。
4.洛仑兹力安培力,力往左甩别忘记。
电磁感应〖选修3-2〗
1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。
2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。
交流电〖选修3-2〗
1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。
中性面计时是正弦,平行面计时是余弦。
2.NBSω是最大值,有效值用热量来计算。
3.变压器供交流用,恒定电流不能用。
理想变压器,初级U I值,次级U I值,相等是原理。
电压之比值,正比匝数比;电流之比值,反比匝数比。
运用变压比,若求某匝数,化为匝伏比,方便地算出。
远距输电用,升压降流送,否则耗损大,用户后降压。
气态方程〖选修3-3〗
研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。
压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。
1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。
正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。
2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。
机械振动〖选修3--4〗
1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。
2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。
到质心摆长行,单摆具有等时性。
3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。
1.大的物体不一定不能看成质点,小的物体不一定能看成质点。
2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。
3.参考系不一定是不动的,只是假定为不动的物体。
4.选择不同的参考系物体运动情况可能不同,但也可能相同。
5.在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。
- ●亲子早教网编辑部周会重点推荐:
- 高一知识点总结 | 高一知识点 | 高一物理 | 初一物理上册知识点总结归纳 | 高一物理知识点总结(重点)超详细 | 高一物理知识点总结(重点)超详细
6.忽视位移的矢量性,只强调大小而忽视方向。
7.物体做直线运动时,位移的大小不一定等于路程。
8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
11.释放物体前,应使物体停在靠近打点计时器的位置。
12.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
13.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。
14.着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。
15.平均速度不是速度的平均。
16.平均速率不是平均速度的大小。
17.物体的速度大,其加速度不一定大。
18.物体的速度为零时,其加速度不一定为零。
19.物体的速度变化大,其加速度不一定大。
20.加速度的正、负仅表示方向,不表示大小。
21.物体的加速度为负值,物体不一定做减速运动。
22.物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
23.物体的速度大小不变时,加速度不一定为零。
24.物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
25.位移图象不是物体的运动轨迹。
26.解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
27.图象是曲线的不表示物体做曲线运动。
28.由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。
29.v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。
30.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。
31.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。
32.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。
33.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。
34.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。
35.自由落体加速度通常可取9.8m/s2或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。
36.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。
37.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。
38.常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。
39.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。
40.找准追及问题的临界条件,如位移关系、速度相等等。
41.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。
42.产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。
43.某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。
44.压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。
45.胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。
46.弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。
47.杆的弹力方向不一定沿杆。
48.摩擦力的作用效果既可充当阻力,也可充当动力。
49.滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。
50.各种摩擦力的方向与物体的运动方向无关。
51.静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。
52.最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关。
53.画力的图示时要选择合适的标度。
54.实验中的两个细绳套不要太短。
55.检查弹簧测力计指针是否指零。
56.在同一次实验中,使橡皮条伸长时结点的位置一定要相同。
57.使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。
58.在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。
59.合力不一定大于分力,分力不一定小于合力。
60.三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。
61.两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。
62一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。
63.物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。
64.所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。
65.惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。
66.物体受力为零时速度不一定为零,速度为零时受力不一定为零。
67.牛顿第二定律F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。
68.力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。
69.虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。
70.牛顿第二定律在力学中的应用广泛,但也不是“放之四海而皆准”,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。
71.用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。
72.用正交分解法列方程时注意合力与分力不能重复计算。
73.注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。
74.超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。
75.判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。
76.有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。
77.两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。
78.国际单位制是单位制的一种,不要把单位制理解成国际单位制。
79.力的单位牛顿不是基本单位而是导出单位。
80.有些单位是常用单位而不是国际单位制单位,如:小时、斤等。
81.进行物理计算时常需要统一单位。
82.只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。
83.做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。
84.合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。
◆ 高一物理知识点总结(重点)超详细 ◆
1、大的物体不一定不能看成质点,小的物体不一定能看成质点。
2、平动的物体不一定能看成质点,转动的物体不一定不能看成质点。
3、参考系不一定是不动的,只是假定为不动的物体。
4、选择不同的参考系物体运动情况可能不同,但也可能相同。
5、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。
6、忽视位移的矢量性,只强调大小而忽视方向。
7、物体做直线运动时,位移的大小不一定等于路程。
8、位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
9、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
10、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
11、使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
12、“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。
13、着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。
14、平均速度不是速度的平均。
15、平均速率不是平均速度的大小。
16、物体的速度大,其加速度不一定大。
17、物体的速度为零时,其加速度不一定为零。
18、物体的速度变化大,其加速度不一定大。
19、加速度的正、负仅表示方向,不表示大小。
20、物体的加速度为负值,物体不一定做减速运动。
21、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
22、物体的速度大小不变时,加速度不一定为零。
23、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
24、位移图象不是物体的运动轨迹。
25、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
26、图象是曲线的不表示物体做曲线运动。
27、由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。
28、v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。
29、人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。
30、严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。
31、自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。
32、自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。
33、自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。
34、自由落体加速度通常可取9.8m/s?或10m/s?,但并不是不变的,它随纬度和海拔高度的变化而变化。
35、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。
36、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。
37、常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。
38、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。
39、找准追及问题的临界条件,如位移关系、速度相等等。
40、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。
41、产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。
42、某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。
43、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。
44、胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。
45、弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。
46、杆的弹力方向不一定沿杆。
47、摩擦力的作用效果既可充当阻力,也可充当动力。
48、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。
49、各种摩擦力的方向与物体的运动方向无关。
50、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。
51、最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关。
52、画力的图示时要选择合适的标度。
53、实验中的两个细绳套不要太短。
54、检查弹簧测力计指针是否指零。
55、在同一次实验中,使橡皮条伸长时结点的位置一定要相同。
56、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。
57、在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。
58、合力不一定大于分力,分力不一定小于合力。
59、三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。
60、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。
61、一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。
62、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。
63、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。
64、惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。
65、物体受力为零时速度不一定为零,速度为零时受力不一定为零。
66、牛顿第二定律 F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。
67、力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。
68、虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。
69、牛顿第二定律在力学中的应用广泛,但也不是“放之四海而皆准”,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。
70、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。
71、用正交分解法列方程时注意合力与分力不能重复计算。
72、注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。
73、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。
74、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。
75、有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。
76、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。
77、国际单位制是单位制的一种,不要把单位制理解成国际单位制。
78、力的单位牛顿不是基本单位而是导出单位。
79、有些单位是常用单位而不是国际单位制单位,如:小时、斤等。
80、进行物理计算时常需要统一单位。
81、只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。
82、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。
83、合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。
84、两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。
85、运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。
86、运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。
87、竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。
88、竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。
89、要注意题目描述中的隐蔽性,如“物体到达离抛出点5m处”,不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。
90、平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。
91、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。
92、并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。
93、斜抛运动最高点的物体速度不等于零,而等于其水平分速度。
94、斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。
95、在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。
96、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。
97、同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。
98、在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。
99、匀速圆周运动的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力。
100、当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。
◆ 高一物理知识点总结(重点)超详细 ◆
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
1、分运动的独立性;
2、运动的等效性(合运动和分运动是等效替代关系,不能并存);
3、运动的等时性;
4、运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的.前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0。
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs。
◆ 高一物理知识点总结(重点)超详细 ◆
多看
物理研究的是物质的结构和相互作用,这些在我们日常生活中也时常能见到,要学好物理,首先就要学会多观察。多留意身边的各种现象,比如闪电,彩虹,灯泡的发光,镜子的反射……如此种种,都是物理学研究的问题。只有多去观察,才能对这些现象的细节有更深入的了解,为下面的方法打好基础。
除了观察身边的物理现象外,我们还需要注意观察课本中和老师在课堂上给出的物理现象,如课本中提出的问题、给出的图片、实验及教师的演示实验等。仔细观察当中的物理现象或事实,产生的条件,表现的形式(如运动、变形、温度变化等)以及结果。
多思
物理作为自然学科,其内在逻辑十分严谨,这就要求我们多去开动脑筋,多想几个“为什么”。思考的过程,是不断解决疑问,同时不断产生新的疑问的过程。只有经过自己的思考,才能从本质上理解观察所得的物理现象及其成因,这样才能更好地把物理学的逻辑理顺。
“多思”更要注意学习和总结物理学科解决问题的方法,帮助自己逐渐提高思维能力。我们的课本在讲述物理概念、定律、公式时,是按物理学科解决问题的步骤在进行的。
一般是先提出问题,再通过实验研究、观察、分析推理、概括总结等步骤进行的。因此,在整个物理学习过程中,在学习课本中解决问题步骤的同时,还要注意思考,看自己能否想出与课本中不同的解决问题的实验、方法和步骤。这样,就能在学习继承前人思维成果的同时,又能锻炼和提高自己解决问题的能力和创新能力。
- 推荐阅读: 高一生物必修一知识点总结 高一物理知识点总结(精华七篇) 初中物理知识点总结(汇编十一篇) 高中生物必修二知识点总结(经典4篇) 七年级上册生物重点知识点总结(汇编六篇) 七年级上册生物重点知识点总结(汇集八篇)
- 为了您方便浏览更多的高一物理知识点总结(重点)超详细网内容,请访问高一物理知识点总结(重点)超详细